การศึกษารูปแบบลำดับนิวคลีโอไทด์บริเวณยีน 16S rRNA ของแบคทีเรีย Paenibacillus polymyxa โดยใช้ความแตกต่างของนิวคลีโอไทด์หนึ่งตำแหน่ง
Main Article Content
Abstract
Abstract
Paenibacillus polymyxa plays a major role in the production of xylanase enzyme, which can be potentially applied in paper and animal feed industries. It is necessary to study the identification of the bacteria for preserving bacterial cultures and effectively bacterial utilization. In this study, we analyzed nucleotide sequences and determined the single nucleotide polymorphisms (SNPs) in 16S rRNA gene of P. polymyxa. The results showed that 10 strains of P. polymyxa contained 11 to 14 rRNA gene copies of 16S rRNA gene, which are located within each genome. The polymorphic sites were found among the multiple 16S rRNA genes and the alignment results showed that 29 variable sites were detected. The region ranging from 465 to 488, which can be amplified using universal 16S rRNA gene primers. This region could be divided into 2 nucleotide sequence patterns (pattern 1 and pattern 2). The pattern 1 could be used to identify Paenibacillus sp. BTK01 as P. polymyxa BTK01 that corresponded with the distance correlation coefficient (0.000 to 0.0017) of 10 reference strains. Thus, the patterns represented the variation within species, which could be used for discrimination of P. polymyxa at subspecies level. In conclusion, the results suggest that these 2 sequence patterns of 16S rRNA gene may improve the 16S rRNA database for species and subspecies identification of P. polymyxa.
Keywords: Paenibacillus; SNP; 16S rRNA gene; identification; subspecies
Article Details
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของคณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ข้อความที่ปรากฏในแต่ละเรื่องของวารสารเล่มนี้เป็นเพียงความเห็นส่วนตัวของผู้เขียน ไม่มีความเกี่ยวข้องกับคณะวิทยาศาสตร์และเทคโนโลยี หรือคณาจารย์ท่านอื่นในมหาวิทยาลัยธรรมศาสตร์ ผู้เขียนต้องยืนยันว่าความรับผิดชอบต่อทุกข้อความที่นำเสนอไว้ในบทความของตน หากมีข้อผิดพลาดหรือความไม่ถูกต้องใด ๆ
References
Brosius, J., Dull, T.J., Sleeter, D.D., and Noller, H.F., 1981, Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli, J. Mol. Biol. 148: 107-127.
Fernández-No, I.C., Böhme, K., Caamaño-Antelo, S., Barros-Velázquez, J. and Calo-Mata, P., 2015, Identification of single nucleotide polymorphisms (SNPs) in the 16S rRNA gene of foodborne Bacillus spp., Food Mocrobiol. 46: 239-245.
Hakovirta, J.R., Prezioso, S., Hodge, D., Pillai, S.P. and Weigel, L.M., 2016, Identification and analysis of informative single nucleotide polymorphisms in 16S rRNA gene sequences of the Bacillus cereus group, J. Clin. Microbiol. 54: 2749-2756.
Kim, D.Y., Chung, C.W., Cho, H.Y., Rhee, Y.H., Shin, D.H., Son, K.H. and Park, H.Y., 2017, Biocatalytic characterization of an endo--1,4-mannanase produced by Paenibacillus sp. strain HY-8, Biotechnol. Lett. 39: 149-155.
Kozak-Muiznieks, N.A., Morrison, S.S., Mercante, J.W., Ishaq, M.K., Johnson, T., Caravas, J., Lucas, C.E., Brown, E., Raphael, B.H. and Winchell, J.M., 2018, Comparative genome analysis reveals a complex population structure of Legionella pneumophila subspecies, Infect. Genet. Evol. 59: 172-185.
Kumar, S., Stecher, G. and Tamura, K., 2016, MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Mol. Biol. Evol. 33: 1870-1874.
Lee, Z.M.P., Bussema, C. and Schmidt, T.M., 2009, rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea, Nucl. Acids Res. 37: D489-D493.
Li, S., Yang, D., Qiu, M., Shao, J., Guo, R., Shen, B., Yin, X., Zhang, R., Zhang, N. and Shen, Q., 2014, Complete genome sequence of Paenibacillus polymyxa SQR-21, a plant growth-promoting rhizobacterium with antifungal activity and rhizosphere colonization ability, Genome Announce. 2(2): e00281-14.
Ma, M., Wang, C., Ding, Y., Li, L., Shen, D., Jiang, X., Guan, D., Cao, F., Chen, H., Feng, R., Wang, X., Ge, Y., Yao, L., Bing, X., Yang, X., Li, J. and Du, B., 2011, Complete genome sequence of Paenibacillus polymyxa SC2, a strain of plant growth-promoting rhizobacterium with broad-spectrum antimicrobial activity, J. Bacteriol. 193: 311-312.
Niu, B., Rueckert, C., Blom, J., Wang, Q. and Borriss, R., 2011, The genome of the plant growth-promoting rhizobacterium Paenibacillus polymyxa M-1 contains nine sites dedicated to nonribosomal synthesis of lipopeptides and polyketides, J. Bacteriol. 193: 5862-5863.
Pettersson, B., Leitner, T., Ronaghi, M., Bolske, G., Uhlen, M. and Johansson, K.E., 1996, Phylogeny of the Mycoplasma mycoides cluster as determined by sequence analysis of the 16S rRNA genes from the two rRNA operons, J. Bacteriol. 178: 4131-4142.
Reischl, U., Feldmann, K., Naumann, L., Gaugler, B.J., Ninet, B., Hirschel, B. and Emler, S., 1998, 16S rRNA sequence diversity in Mycobacterium celatum strains caused by presence of two different copies of 16S rRNA gene, J. Clin. Microbiol. 36: 1761-1764.
Walia, A., Mehta, P., Chauhan, A. and Shirkot, C.K., 2013, Production of alkalophilic xylanases by Paenibacillus polymyxa CKWX1 isolated from decomposing wood, Proc. Nat. Acad. Sci. Ind. B Biol. Sci. 83: 215-223.
Wang, L., Zhang, L., Liu, Z., Zhao, D., Liu, X. and Zhang, B., 2013, A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli, PLOS Genet. 9(10): e1003865.
Yi, H., Chun, J. and Cha, C.J., 2014, Genomic insights into the taxonomic status of the three subspecies of Bacillus subtilis, Syst. Appl. Microbiol. 37: 95-99.