การพัฒนาแคปซูลเมล็ดไม้เพื่อการฟื้นฟูป่า

Main Article Content

พรเทพ เหมือนพงษ์

Abstract

Abstract


This study aims to develop seed capsules with pioneer tree species with fire and drought resistant for forest restoration by using an Unmanned Aerial Vehicle (UAV) instead of planting tree by forest workers. The appropriate species were selected including Peltophorum dasyrachis (Miq.) Kurz, Dalbergia cochinchinensis Pierre, Phyllanthus emblica L., Pterocarpus macrocarpus Kurz, and Albizia procera (Roxb.) Benth. Seed capsule were divided to 5 categories, i.e. (1) chemical fertilizer, (2) mycorrhiza, (3) chemical fertilizer + mycorrhiza, (4) seed in bentonite capsule, and (5) bare seed. The results showed that the most suitable species in both abandoned maize field and forest canopy gap are Albizia procera (Roxb.) Benth, Dalbergia cochinchinensis Pierre, and Pterocarpus macrocarpus Kurz. with the highest germination and survival rate. These species have the ability to fix atmospheric nitrogen through symbiosis with bacteria or fungi in root nodules. The small seed size is appropriate for using in seed capsule with composed of Bentonite clay. Mycorrhiza is the most suitable composite to combine to the seed capsule for promoting seedling growth rate by promoting the growth of root. However, the success of forest restoration program is not only the germinating of seedling from capsule but it needs more concern of other threats e.g. forest fire, long period of drought or seed destroying by animals to get achievement. 


Keywords: seed capsule; forest restoration; unmanned aerial vehicle (UAV)

Article Details

How to Cite
เหมือนพงษ์ พ. (2019). การพัฒนาแคปซูลเมล็ดไม้เพื่อการฟื้นฟูป่า. Thai Journal of Science and Technology, 8(4), 398–410. https://doi.org/10.14456/tjst.2019.47
Section
วิทยาศาสตร์ชีวภาพ
Author Biography

พรเทพ เหมือนพงษ์

ภาควิชาวนวัฒนวิทยา คณะวนศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900

References

กรมป่าไม้, ข้อมูลสภาพพื้นที่ป่าไม้ พ.ศ.2560-2561, แหล่งที่มา : http://www.forest.go.th, 3 มีนาคม 2562.
กรมอุตุนิยมวิทยา, ภูมิอากาศจังหวัดน่าน, แหล่งที่มา : http://climate.tmd.go.th/data/province, 21 กุมภาพันธ์ 2562.
ปรีชา สุวรรณคาม, 2546, วิธีการทดสอบการงอกของเมล็ดไม้ป่าบางชนิด, กรมอุทยานแห่งชาติ สัตว์ป่า และพันธุ์พืช, กรุงเทพฯ.
Biocarbon, Biodegradable seedpods; providing a scalable wetland solution, Available Source: https://www.biocarbonengineering.com/services, 3 March 2018.
Chang, G., Jin, T.Z., Pei, J.F., Chen, X.N., Zhang, B. and Shi, Z.J., 2012, Seed dispersal of three sympatric oak species by forest rodents in the Qinling Mountains, Central China, Plant Ecol. 213: 1633-1642.
Diane, L.H., 2008, Understanding forest seedling quality: Measurements and interpretation, Tree Planters’ Notes 52(2): 24-30.
DFSC, 2000, Seed Leaflet No. 7, Albizzia lebbeck (L.) Benth, Danida Forest Seed Centre.
Ekta, K. and Singh, J.S., 2000, Influence of seed size on seedling growth of Albizia procera under different soil water levels, Ann. Bot. 86: 1185-1192.
Gay, C., Corbineau, F. and Côme, D., 1991, Effects of temperature and oxygen on seed germination and seedling growth in sunflower (Helianthus annuus L.), Envi. Exper. Bot. 31: 193-200.
Kupfer, J.A. and Malanson, G.P., 1993, Structure and composition of a riparian forest edge, Phys. Geogr. 14: 154-170.
Laurance, W.F., Camargo, J.L.C., Luizado, R.C.C., Laurance, S.G., Pimm, S.L., Bruna, E.M., Stouffer, P.C., Williamson, G.B., Benitez-Malvido, J., Vasconcelos, H.L., van Houtan, K.S., Zartman, C.E., Boyle, S.A., Didham, R.K., Andrade, A. and Lovejoy, T.E., 2011, The fate of Amazonian forest fragments: A 32-year investigation, Biol. Conserv. 144: 56-67.
Liu, X., Xu, D., Yang, Z. and Zhang, N., 2017, Geographic variations in seed germination of Dalbergia odorifera, Indus. Crops Pro. 102: 45-50.
Martínez, O.J.A., Ackerman, E.J.M., Montiel, D.G. and Parrottad, J.A., 2015, Seed dispersal turns an experimental plantation on degraded land into a novel forest in urban northern Puerto Rico, For. Ecol. Man. 357: 68-75.
NAS, 1980, Firewood Crops: Shrub and Tree Species for Energy Production, National Academy of Sciences, Washington, DC.
Pearson, T.R.H., Burslem, D.F., Mullins, C.E. and Dalling, J.W., 2002, Germination ecology of neotropical pioneers: Interacting effects of environmental conditions and seed size, Ecology 83: 2798-2807.
Peerzada, A.M. and Naeem, M., 2018, Germination ecology of Cenchrus biflorus Roxb: effects of environmental factors on seed germination, Range. Ecol. Man. 71: 424-432.
Pyke, D.A., Wirth, T.A. and Beyers, J.L., 2013, Does seeding after wildfires in rangelands reduce erosion or invasive species?, Restor. Ecol. 3: 415-421.
Singh A.N., Raghubanshi, A.S. and Singh, J.S., 2004, Impact of native tree plantations on mine spoil in a dry tropical environment, For. Ecol. Man. 187: 49-60.
Tawaraya, K. and Turjaman, M., 2014, Use of Arbuscular Mycorrhizal Fungi for Reforestation of Degraded Tropical Forests, In Solaiman, Z., Abbott, L.K. and Varma, A. (Eds.), Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration, Springer, Berlin.
The National Forestry Bureau, 2013, China Forestry Development Report 2013, China Forestry Publishing House, Beijing.
Wuland, S., Cheng W. and Tawaraya K., 2016, Arbuscular mycorrhizal fungal inoculation improves Albizia saman and Paraserianthes falcataria growth in post-opencast coal mine field in East Kalimantan, Indonesia, For. Ecol. Man. 376: 67-73.
Weller S.L., Florentinea, S.K. and Chauhan, B.S., 2019, Influence of selected environmental factors on seed germination and seedling emergence of Dinebra panicea var. brachiata (Steud.), Crop Prot. 117: 121-127.
Zhou, H., Yue, H., Ai, X., Chen, G., Cun, M., Xie, J. and Tian, Y., 2015, Poor seed dispersal, seed germination and seedling survival explain why rubber trees (Hevea brasiliensis) do not expand into natural forests in Xishuangbanna, southwest China, For. Ecol. Man. 358: 240-247.