การถ่ายยีนและวิเคราะห์การแสดงออกของยีน OsB2 ที่ควบคุมการสังเคราะห์แอนโทไซยานินในข้าว
Main Article Content
บทคัดย่อ
บทคัดย่อ
ข้าวที่มีเยื่อหุ้มเมล็ดสีดำมีสารต้านอนุมูลอิสระที่สำคัญ คือ แอนโทไซยานิน ยีน OsB2 ควบคุมการสังเคราะห์แอนโทไซยานินและมีรหัสสร้างโปรตีนทรานสคริพชันแฟคเตอร์ สามารถกระตุ้นให้เกิดการสังเคราะห์แอนโทไซยานินในข้าว งานวิจัยนี้ได้ถ่ายยีน OsB2 ซึ่งโคลนจากข้าวที่มีเยื่อหุ้มเมล็ดสีดำเข้าสู่ข้าวพันธุ์ Kasalath ที่มีเยื่อหุ้มเมล็ดสีแดงโดยใช้อะโกรแบคทีเรียม เพื่อศึกษาหน้าที่ของยีนที่มีต่อการสังเคราะห์แอนโทไซยานินในข้าว จากการถ่ายยีน OsB2 เข้าสู่ข้าวพันธุ์ Kasalath พบว่าได้ต้นข้าวจำนวน 59 ต้น เมื่อนำต้นข้าวที่ได้รับการถ่ายยีนมาตรวจสอบด้วยเทคนิคพีซีอาร์พบว่าต้นข้าวที่มียีน OsB2 แทรกอยู่ในจีโนมคิดเป็น 84.28 เปอร์เซ็นต์ ฟีโนไทป์ของต้นข้าวที่ได้รับยีน OsB2 มีลักษณะเหมือนกับต้นข้าวที่ไม่ผ่านการถ่ายยีน ยกเว้นเมล็ดอ่อนและเมล็ดแก่มีการสะสมของรงควัตถุสีม่วงบนเยื่อหุ้มเมล็ด การวิเคราะห์ต้นข้าวดัดแปลงพันธุกรรมรุ่น T1 พบการกระจายตัวของยีน gus ไปสู่รุ่นลูกในอัตราส่วน 3 : 1 แสดงว่ามียีนเข้าแทรกในจีโนมข้าว 1 ตำแหน่ง ฟีโนไทป์ของต้นข้าวและเมล็ดรุ่น T1 มีลักษณะเหมือนกับรุ่น T0 นอกจากนี้ยังพบว่ามีการแสดงออกของยีน OsB2 ในต้นข้าวดัดแปลงพันธุกรรมและเมล็ดรุ่น T1 ของข้าวดัดแปลงพันธุกรรมมีฤทธิ์ต้านอนุมูลอิสระสูงกว่าในต้นที่ไม่ผ่านการถ่ายยีน
คำสำคัญ : ข้าว; ยีน OsB2; การถ่ายยีน; แอนโทไซยานิน
Article Details
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของคณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ข้อความที่ปรากฏในแต่ละเรื่องของวารสารเล่มนี้เป็นเพียงความเห็นส่วนตัวของผู้เขียน ไม่มีความเกี่ยวข้องกับคณะวิทยาศาสตร์และเทคโนโลยี หรือคณาจารย์ท่านอื่นในมหาวิทยาลัยธรรมศาสตร์ ผู้เขียนต้องยืนยันว่าความรับผิดชอบต่อทุกข้อความที่นำเสนอไว้ในบทความของตน หากมีข้อผิดพลาดหรือความไม่ถูกต้องใด ๆ
เอกสารอ้างอิง
Cossins, E., Lee, R. and Packer, L., 1998, ESR studies of vitamin C regeneration, order of reactivity of natural source phytochemical preparations, IUBMB Life 45: 583-597.
Choudhury, B.I., Khan, M.L. and Dayanandan, S., 2014, Patterns of nucleotide diversity and phenotypes of two domestication related genes (OsC1 and Wx) in indigenous rice varieties in northeast India, BMC Genet. 15: 71.
Endo, S., Sugita, K., Sakai, M., Tanaka, H. and Ebinuma, H., 2002, Single-step trans formation for generating marker-free transgenic rice using the ipt-type MAT vector system, Plant J. 30: 115-122.
Furukawa, T., Maekawa, M., Oki, T., Suda, I., Iida, S., Shimada, H. and Kadowaki, K. I., 2007, The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp, Plant J. 49: 91-102.
Geekiyanage, H., Jicha, G.A., Nelson, P.T. and Chan, C., 2012, Blood serum miRNA: non-invasive biomarkers for Alzheimer's disease, Exp. Neurol. 235: 491-496.
Hu, J., Anderson, B. and Wessler, S.R., 1996, Isolation and characterization of rice R genes: Evidence for distinct evolutionary paths in rice and maize, Genetics 142: 1021-1031.
Hwang, S. and Kim, Y., 2000, A simple and reliable method for preparation of cross-contamination-free plant genomic DNA for PCR-based detection of transgenes, J. Biochem. Mol. Biol. 33: 537-540.
Inta, P., Phongburaphat, W., Pongjaroenkit, S., Chowpongpang, S., Sangtong, V. and Sakulsingharoj, C., 2013, Cloning and characterization of OSB2 gene controlling anthocyanin biosynthesis in rice, Thai J. Genet. 6(1): 25-29.
Jefferson, R., 1987, Assaying chimeric genes in plants: The GUS gene fusion system, Plant Mol. Biol. Rep. 5: 387-405.
Kawahigashi, H., Hirose, S., Iwai, T., Ohashi, Y., Sakamoto, W., Maekawa, M. and Ohkawa, Y., 2007, Chemically induced expression of rice OSB2 under the control of the OsPR1, 1 promoter confers increased anthocyanin accumulation in transgenic rice, J. Agric. Food Chem. 55: 1241-1247.
Kim, D.H., Park, S., Lee, J.Y., Ha, S.H., Lee, J.G. and Lim, S.H., 2018, A rice B-Box protein, OsBBX14, finely regulates anthocyanin biosynthesis in rice, Int. J. Mol. Sci. 19: 2190.
Lepiniec, L., Debeaujon, I., Routaboul, J.M., Baudry, A., Pourcel, L., Nesi, N. and Caboche, M., 2006, Genetics and biochemistry of seed flavonoids, Ann. Rev. Plant Biol. 57: 405-430.
Lim, S.H. and Ha, S.H., 2013, Marker development for the identification of rice seed color, Plant Biotechnol. Rep. 7: 391-398.
Maeda, H., Yamaguchi, T., Omoteno, M., Takarada, T., Fujita, K., Murata, K. and Mukaino, N., 2014, Genetic dissection of black grain rice by the development of a near isogenic line, Breeding Sci. 64: 134-141.
Nagao, S. and Takahashi, M.E., 1963, Trial construction of twelve linkage groups in Japanese rice: Genetical studies on rice plant, J. Fac. Agric. Hokkaido Univ. 53: 72-130.
Na Rachasima, L., Sukkasem, R., Pongjaroen kit, S., Sangtong, V., Chowpongpang, S., and Sakulsingharoj, C., 2017, Expression analysis and nucleotide variation of OsC1 gene associated with anthocyanin pigmentation in rice, Genomics Genet. 10: 46-53.
Oikawa, T., Maeda, H., Oguchi, T., Yamaguchi, T., Tanabe, N., Ebana, K. and Izawa, T., 2015, The birth of a black rice gene and its local spread by introgression, Plant Cell 27: 2401-2414.
Oshima, M., Taniguchi, Y., Akasaka, M., Abe, K., Ichikawa, H., Tabei, Y. and Tanaka, J., 2019, Development of a visible marker trait based on leaf sheath-specific anthocyanin pigmentation applicable to various genotypes in rice, Breeding Sci., Article ID: 18151, 11 p.
Rahman, M.M., Lee, K.E. and Kang, S.G., 2016, Allelic gene interaction and anthocyanin biosynthesis of purple pericarp trait for yield improvement in black rice, J. Life Sci. 26: 727-736.
Reddy, V.S., Goud, K.V., Sharma, R. and Reddy, A.R., 1994, Ultraviolet-B-responsive anthocyanin production in a rice cultivar is associated with a specific phase of phenylalanine ammonia lyase biosynthesis, Plant Physiol. 105: 1059-1066.
Saika, H., Sakamoto, W., Maekawa, M. and Toki, S., 2011, Highly efficient visual selection of transgenic rice plants using green fluorescent protein or anthocyanin synthetic genes, Plant Biotechnol. 28: 107-110.
Saitoh, K., Onishi, K., Mikami, I., Thidar, K. and Sano, Y., 2004, Allelic diversification at the C (OsC1) locus of wild and cultivated rice, Genetics 168: 997-1007.
Sakamoto, W., Ohmori, T., Kageyama, K., Miyazaki, C., Saito, A., Murata, M., Noda, K. and Maekawa, M., 2001, The Purple leaf (Pl) locus of rice: The Plw allele has a complex organization and includes two genes encoding basic helix-loop-helix proteins involved in anthocyanin biosynthesis, Plant Cell Physiol. 42: 982-991.
Sakulsingharoj, C., Inta, P., Sukkasem, R., Pongjaroenkit, S., Chowpongpang, S. and Sangtong, V., 2014, Overexpression of OSB2 gene in transgenic rice up-regulated expression of structural genes in anthocyanin biosynthesis pathway, Thai J. Genet. 7(3): 173-182.
Sakulsingharoj, C., Phanlumpak, K., Inta, P., Pongjaroenkit, S. and Sangtong, V., 2015, Transformation of rice (Oryza sativa) cultivar Taichung 65 mediated by Agrobacterium tumefaciens, pp. 189-196, In Biology Education and Research in a Changing Planet, Springer, Singapore.
Sakulsingharoj, C., Inta, P., Sukkasem, R., Pongjaroenkit, S., Chowpongpang, S. and Sangtong, V., 2016, Cloning and characterization of OSB1 gene controlling anthocyanin biosynthesis from Thai black rice, Genomics Genet. 9: 7-18.
Shao, Y., Xu, F., Sun, X., Bao, J. and Beta, T., 2014, Phenolic acids, anthocyanins, and antioxidant capacity in rice (Oryza sativa L.) grains at four stages of development after flowering, Food Chem. 143: 90-96.
Shi, J., Yu, J., Pohorly, J.E. and Kakuda, Y., 2003, Polyphenolics in grape seeds biochemistry and functionality, J. Med. Food 6: 291-299.
Shin, Y.M., Park, H.J., Yim, S.D., Baek, N.I., Lee, C.H., An, G. and Woo, Y.M., 2006, Transgenic rice lines expressing maize C1 and R-S regulatory genes produce various flavonoids in the endosperm, Plant Biotechnol. J. 4: 303-315.
Shih, C.H., Chu, H., Tang, L.K., Sakamoto, W., Maekawa, M., Chu, I.K. and Lo, C., 2008, Functional characterization of key structural genes in rice flavonoid biosynthesis, Planta 228: 1043-1054.
Sun, X., Zhang, Z., Chen, C., Wu, W., Ren, N., Jiang, C. and Zhang, H., 2018, The C-S-A gene system regulates hull pigmentation and reveals evolution of anthocyanin biosynthesis pathway in rice, J. Exp. Bot. 69: 1485-1498.
Toki, S., 1997, Rapid and efficient Agrobacte rium-mediated transformation in rice, Plant Mol. Biol. Rep. 15: 16-21.
Zhu, Q., Yu, S., Zeng, D., Liu, H., Wang, H., Yang, Z. and Zhao, X., 2017, Development of “Purple Endosperm Rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system, Mol. Plant 10: 918-929.