การค้นหายีนในกลไกการออกดอกของมะพร้าว (Cocos nucifera L.) ด้วยเทคนิค Differentially Display RT-PCR

Main Article Content

ศิริวรรณ ไทยสกุล
ปริยา มณีประเสริฐ
จรีรัตน์ มงคลศิริวัฒนา

Abstract

Abstract


To identify novel genes involved in controlling flowering transition of coconut, DDRT-PCR (differentially display RT PCR) was used to compare expression of genes in somatic apical meristem (SAM) of dwarf coconut during vegetative growth phase, Vg (germination, 4, 6, 12 and 24 months of age) and reproductive phase, Rp (36 months of age). The result revealed that genes encoding adenylate kinase, DNA (cytosine-5)-methyltransferase 1b, 14-3-3 protein 6, retrotransposon RLC_Rider_Eg133H20-1, ALP1 like transposon and uncharacterized proteins (LOC105038377 and LOC105032930) were identified as up-regulated genes in reproductive phase. The expression of these candidate genes were monitored during growth and development in both dwarf (early flowering type) and tall (late flowering type) coconuts using quantitative real time PCR. The expression of those six genes, except ALP1 like, showed gradually increase during vegetative growth phase (germination, 4, 6, 12 and 24 months) and reached the highest in reproductive phase in both coconut types (36 months in dwarf and 60 months in tall types). Interestingly, ALP1 like showed dynamic expression, up-regulated during seedling and then disappeared during juvenile and up-regulated again during adult and reproductive phase. The different expression pattern between dwarf and tall coconuts was also found in which tall coconut showed delay expression. Taken its function and this result together, we proposed that shorten vegetative growth phase and early flowering of dwarf coconut was probably controlled by ALP1 like


Keywords: coconut; flowering transition; prolong vegetative growth phase; DDRT PCR (differentially display RT-PCR)

Article Details

How to Cite
ไทยสกุล ศ., มณีประเสริฐ ป., & มงคลศิริวัฒนา จ. (2019). การค้นหายีนในกลไกการออกดอกของมะพร้าว (Cocos nucifera L.) ด้วยเทคนิค Differentially Display RT-PCR. Thai Journal of Science and Technology, 8(5), 532–543. https://doi.org/10.14456/tjst.2019.58
Section
วิทยาศาสตร์ชีวภาพ
Author Biographies

ศิริวรรณ ไทยสกุล

สาขาพันธุวิศวกรรม โครงการสหวิทยาการระดับบัณฑิตศึกษา บัณฑิตวิทยาลัย มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900

ปริยา มณีประเสริฐ

หน่วยวิจัยเทคโนโลยีพันธุศาสตร์และการประยุกต์ คณะศิลปศาสตร์และวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตกาแพงแสน ถนนมาลัยแมน อำเภอกำแพงแสน นครปฐม 73140

จรีรัตน์ มงคลศิริวัฒนา

สาขาวิชาพันธุศาสตร์ ภาควิชาวิทยาศาสตร์ คณะศิลปศาสตร์และวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตกาแพงแสน ถนนมาลัยแมน อำเภอแพงแสน จังหวัดนครปฐม 73140

References

Araki, T., 2001, Transition from vegetative to reproductive phase, Curr. Opin. Plant Biol. 4: 63-68.
Berardini, T.Z., Bollman, K., Sun, H. and Poethig, R.S., 2001, Regulation of vegetative phase change in Arabidopsis thaliana by cyclophilin 40, Science 291: 2405-2407.
Bergonzi, S. and Albani, M.C., 2011, Reproductive competence from an annual and perennial Perspective, J. Exp. Bot. 62: 4415-4422.
Bohmert, K., Camus, I., Bellini, C., Bouchez, D., Caboche, M. and Benning, C., 1998, AGO1 defines a novel locus of Arabidopsis controlling leaf development, EMBO. J. 17: 170-180.
Boss, P.K., Bastow, R.M., Mylne, J.S. and Dean, C., 2004, Multiple pathways in the decision to flower: Enabling, promoting, and resetting, Plant Cell 16: 18-31.
Clarke, J.H., Tack, D., Findlay, K., van Montagu, M. and Van Lijsebettens, M., 1999, The SERRATE locus controls the formation of the early juvenile leaves and phase length in Arabidopsis, Plant J. 20: 493-501.
Colonna-Romano, S., Leone, A. and Maresca, B., 1998, Differential-Display Reverse Transcription-PCR (DDRT-PCR), Springer Berlin Heidelberg.
Hattasch, C., Flachowsky, H., Kapturska, D. and Hanke, M.V., 2008, Isolation of flowering genes and seasonal changes in their transcript levels related to flower induction and initiation in apple (Malus domestica), Tree Physiol. 28: 1459-1466.
Hackett, W.P., 1985. Juvenility, maturation and rejuvenation in woody plant, Hort. Rev. 7: 109-155.
Hunter, C., Sun, H. and Poethig, R.S., 2003, The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTE family member, Curr. Biol. 13: 1734-1739.
Kankel, M.W., Ramsey D.E., Stokes T.L., Flowers S.K., Haag J.R., Jeddeloh J.A., Riddle, N.C., Verbsky M. L. and Richards E.J. 2003. Arabidopsis MET1 cytosine methyltransferase mutants. Genetics. 163: 1109-22.
Kim, S.Y., Zhu, T. and ReneeSung, Z.R., 2010, Epigenetic regulation of gene programs by EMF1 and EMF2 in Arabidopsis, Plant Physiol. 152: 516-528.
Lawson, E.J. and Poethig, R.S., 1995, Shoot development in plant: time for a change, Trends Genet. 11: 263-268.
Li, J.X., Hou, X.J., Zhu, J., Zhou, J.J., Huang, H.B., Yue, J.Q., Gao, J.Y., Du, Y.X., Hu, C.X., Hu, C.G. and Zhang J.Z., 2017, Identification of genes associated with lemon floral transition and flower development during floral inductive water deficits: A hypothetical model, Front. Plant. Sci. 8: 1-17.
Liang, S.C., Hartwig, B., Perera, P., Mora-García, S., Leau, E., Thornton, H., Alves, F.L., Rapsilber, J., Yang, S., James, G.V., Schneeberger, K., Finnegan, E.J., Turck, F. and Goodrich, J., 2015, Kicking against the PRCs: A domesticated transposase antagonises silencing mediated by polycomb group proteins and Is an accessory component of polycomb repressive complex 2, PLoS Genet. 11: 1-26.
Martin-Trillo, M. and Martinez-Zapater, J.M., 2002, Growing up fast: manipulating the generation time of trees, Curr. Opin. Biotechnol. 13: 151-155.
Mongkolsiriwatana, C., 2008, Expression Analysis of Photoperiod Responsive Genes in Rice (Oryza sativa L.) KDML 105, Ph.D. Thesis, Kasetsart University, Bangkok.
Park, M.Y., Wu, G., Gonzalez-Sulser, A., Vaucheret, H. and Poethig, R.S., 2005, uclear processing and export of icroRNAs in Arabidopsis, Proc. Nat. Acad. Sci. USA. 102: 3691-3696.
Pavlopoulou, A. and Kossida, S., 2007, Plant cytosine-5 DNA methyltransferases: Structure, function, and molecular evolution, Genomics 90: 530-541.
Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H.L. and Poethig, R.S., 2004, SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis, Genes Dev. 18: 2368-2379.
Schlattner, U. and Wagner, E., 2001, The adenylate kinase family in plants: Isoenzyme activity is related to flower induction, Endocyt. Cell Res. 14: 67-73.
Simpson, G.G., Gendall, A.R. and Dean, C., 1999. When switch to flowering, Annu. Rev. Cell. Dev. Biol. 15: 519-550.
Smith, M.R., Willmann, M.R., Wu, G., Berardini, T.Z., Moller, B., Weijers, D. and Poethig, R.S., 2009, Cyclophilin 40 is required for microRNA activity in Arabidopsis, Proc. Nat. Acad. Sci. USA. 106: 5424-5429.
Tamakia,S., Tsujib, H., Matsumotob, A., Fujitab, A., Shimatanib, Z., Teradac R., akamotoa, T., Kurata, T. and Shimamoto, K., 2015, FT-like proteins induce transposon silencing in the shoot apex during floral induction in rice, Proc. Nat. Acad. Sci. USA. 112: E901-E910.
Taoka, K., Ohki, I., Tsuji, H., Furuita, K., Hayashi, K., Yanase, T., Yamaguchi, M., Nakashima, C., Purwestri, Y. A., Tamaki, S., Ogaki, Y., Shimada, C., Nakagawa, A., Kojima, C. and Shimamoto, K., 2011, 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen, Nature 476: 332-335.
Telfer, A. and Poethig, R.S., 1998, HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana, Development 125: 1889-1898.
Yang, L., Huang, W., Wang, H., Cai, R., Xu, Y. and Huang, H., 2006, Characterizations of a hypomorphic argonaute1 mutant reveal novel AGO1 functions in Arabidopsis lateral organ development, Plant Mol. Biol. 61: 63-78.