การปรับปรุงพันธุ์เพื่อเพิ่มสารแอนโทไซยานินในเมล็ดข้าวโพดหวานลูกผสม
Main Article Content
Abstract
The shrunken-2 (sh2sh2), purple (Pr1Pr1) and color (C1C1) genes of corn are located on chromosomes 3, 5 and 9, respectively. If these three genes are combined into a plant and the expression of them is positive, reflecting an increase in anthocyanin in the kernel of sweet corn, it would be more beneficial for consumer health. The objective of this study was to integrate the purple from purple opaque-2 waxy corn into sweet corn. The purple waxy corn was crossed with sweet corn inbred lines to obtain F1 hybrids. In the segregation of S2 progenies, only the purple or red wrinkled kernels were selected and planted to obtain the fixed shrunken-2 gene in S3 lines. Only purple lines were advanced to the next generations by self-pollination until the S6 lines. Eight single cross hybrids were produced using topcross design of 8 female x 1 male parents. From yield trail of hybrids, the results showed that tested hybrids had high total sugar (182-460 mg/g), non-reducing sugar (174-451 mg/g), and total anthocyanin content (131-141 mg/100g) in the kernels. All hybrids had a purple kernel with good flavor. In addition, the anthocyanin in the tested hybrids was higher than that of the purple check (71 mg/100g) and the yellow check (5 mg/100g). The crosses of Ag-PS3 x Ag-PS9 and Ag-PS7 x Ag-PS9 had the same fresh ear weight, total sugar, and non-reducing sugar as check varieties, Insee 2 and PAC12081A. In summary, the combination of two grain quality traits, purple aleurone layer (Pr1Pr1C1C1) and sweetness (sh2sh2), referred to the purple sweet corn was fully achieved by inbred lines and their F1 hybrids improving the food value of this specialty corn.
Article Details
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของคณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ข้อความที่ปรากฏในแต่ละเรื่องของวารสารเล่มนี้เป็นเพียงความเห็นส่วนตัวของผู้เขียน ไม่มีความเกี่ยวข้องกับคณะวิทยาศาสตร์และเทคโนโลยี หรือคณาจารย์ท่านอื่นในมหาวิทยาลัยธรรมศาสตร์ ผู้เขียนต้องยืนยันว่าความรับผิดชอบต่อทุกข้อความที่นำเสนอไว้ในบทความของตน หากมีข้อผิดพลาดหรือความไม่ถูกต้องใด ๆ
References
Abe, A., Lasisi, O.A. and Akinrinbola, O.J., 2019. Field performance of shrunken-2 super-sweet corn populations derived from tropical field maize x shrunken-2 super-sweet corn crosses in Ibadan, Nigeria, J. Plant Breed. Crop Sci. 11: 158-163.
Brewbaker, J.L. and Martin, I., 2015, Breeding tropical vegetable corns, Plant Breed. Rev. 39: 125-198.
Castaneda-Ovando, A., Pacheco-Hernandez, M.L., Paez-Hernandez, M.E., Rodriguez, J.A. and Galan-Vidal, C.A., 2009, Chemical studies of anthocyanins: A review, Food Chem. 113: 859-871.
Cevallos-Casals, B.A. and Cisneros-Zevallos, L., 2003, Stoichiometric and kinetic studies of phenolic antioxidants from Andean purple corn and red-fleshed sweetpotato, J. Agric. Food Chem. 51: 3313-3319.
Creech, R.G., 1965, Genetic control of carbohydrate synthesis in maize, Genetics 52: 1175-1186.
Evensen, K.B. and Boyer, C.D., 1986, Carbohydrate composition and sensory quality of fresh and stored sweet corn, J. Am. Soc. Hort. Sci. 111: 734-738.
Galicia, L., Nurit, E., Rosales, A. and Palacios, R.N., 2008, Laboratory Protocols 2009: Maize Nutritional Quality and Plant Tissue Analysis Laboratory, CIMMYT, Mexico D.F.
Garwood, D.L., McArdle, F.J., Vanderslice, S.F. and Shannon, J.C., 1976, Postharvest carbohydrate transformations and processed quality of high sugar maize in genotypes, J. Am. Soc. Hort. Sci. 101: 400-404.
Hannah, L.C., 2005, Starch synthesis in maize endosperm, Maydica 50: 497-506.
Jing, P. and Giusti, M.M., 2005, Characterization of purple corncobs (Zea mays L.) anthocyanin-rice waste and its application in dairy products, J. Agric. Food Chem. 53: 8775-8781.
Li, J., Walker, C.E. and Faubion, J.M., 2011, Acidulant and oven type affect total anthocyanin content of blue corn cookies, J. Sci. Food Agric. 91: 38-43.
Nelson, O.E., Mertz, E.T. and Bates, L.S., 1979, Inheritance of amino acid content in cereals: Seed protein improvement in cereal and grain legumes, Science 145: 279-280.
R Core Team, 2019, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, Available Source: http://www.R-project.org, August 8, 2019.
Rosemary, H.F., 2000, Inheritance of kernel color in corn: Explanations & investigations, Am. Biol. Teach. 62: 181-188.
Sharma, M., Cortes-Cruz, M., Ahern, K.R., McMullen, M., Brutnell, P.T. and Chopra. S., 2011, Identification of the Pr1 gene product completes the anthocyanin biosynthesis pathway of maize, Genetics 188: 69-79.
Soberalske, R.M. and Andrew, R.H., 1978, Gene effects kernel moisture and sugars of near-isogenic lines of sweet corn, Crop Sci. 18: 743-746.
Thevenot, D., Delignette-Muller, M.L., Chris tieans, S. and Vernozy-Rozand, C., 2005, Prevalence of Listeria monocytogenes in 13 dried sausage processing plants and their products, Int. J. Food Microbiol. 102: 85-94.
Tracy, W.F., 2001, Sweet Corn, pp. 155-197, In Hallauer, A.R. (Ed.), Specialty Corns, CRC Press, Boca Raton, FL.
Wong, A.D, Juvik, J.A., Breeden, D.C. and Swiader, J.M., 1994, Shrunken2 sweet corn yield and the chemical components of quality, J. Am. Soc. Hort. Sci. 119: 747-755.
Zhao, X., Zhang, C., Guigas, C., Ma, Y., Corrales, M., Hu, X. and Tauscher, B., 2008, Composition and thermal stability of anthocyanins from Chinese purple corn (Zea mays L.), J. Agric. Food Chem. 56: 20761-10766.