ความหลากหลายของไลเคน ณ โป่งน้ำร้อนท่าปาย อำเภอปาย จังหวัดแม่ฮ่องสอน

Main Article Content

ศรัณย์ จีนะเจริญ
คัทลียา ยารังสี
ยุพเยาว์ คบพิมาย

Abstract

The survey of lichen diversity in the area of Tha Pai hot spring, Pai District, Mae Hong Son was performed in eight lines outward from the centre of the hot spring. Ten trees in each line with every five metres in distance (80 trees in total) were marked. The grid frame 10 x 50 cm2 was placed on the bark. The photos of lichen were taken. Lichen morphology and physical characters, tree perimeter, bark type and direction of tree, which the most lichen abundance were recorded. The results showed that there were 24 families and 38 genera of the lichens. Two families and three genera were in foliose group and 22 families and 35 genera were in crustose. The relationship between numbers of lichen thallus and bark type showed that three genera, Lepraria, Pertusaria and Pyrenula, were found no significant difference on both smooth and rough bark (p = 0.328, 0.365 and 0.262, respectively).  On the other hand, there were seven genera showed the existence on a smooth bark more than a rough bark, which were Arthopyrenia, Bacidia, Cryptothecia, Graphis, Letrouitia, Malmidea and Opegrapha (p < 0.05). There was one genus, Diploschistes, which was found on a rough bark more than a smooth bark (p = 0.005). Lichen was mostly found on the north of tree stem. The correlations between the distance from the hot spring and the numbers of genus and thallus were very low, R2 = 0.1163 and 0.0655, respectively. Moreover, the average numbers of genus in each survey line were similar (p = 0.598). In addition, one genus (Pamotrema) which was categorized to be sensitive to air quality, and 11 genera which were categorized to be tolerant and highly tolerant to air quality, were found in this study.

Article Details

How to Cite
จีนะเจริญ ศ., ยารังสี ค., & คบพิมาย ย. (2020). ความหลากหลายของไลเคน ณ โป่งน้ำร้อนท่าปาย อำเภอปาย จังหวัดแม่ฮ่องสอน. Thai Journal of Science and Technology, 9(4), 564–576. https://doi.org/10.14456/tjst.2020.59
Section
วิทยาศาสตร์ชีวภาพ
Author Biographies

ศรัณย์ จีนะเจริญ

ภาควิชาชีววิทยา คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏเชียงใหม่ ตำบลช้างเผือก อำเภอเมือง จังหวัดเชียงใหม่ 50300

คัทลียา ยารังสี

ภาควิชาชีววิทยา คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏเชียงใหม่ ตำบลช้างเผือก อำเภอเมือง จังหวัดเชียงใหม่ 50300

ยุพเยาว์ คบพิมาย

สาขาพันธุศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยแม่โจ้ ตำบลหนองหาร อำเภอสันทราย จังหวัดเชียงใหม่ 50290

References

Dahlkild, A., Kaellersjoe, M., Lohtander, K. and Tehler, A., 2001, Photobiont diversity in the Physciaceae (Lecanorales), Bryologist 104: 527-536.

Fernández-Mendoza, F., Domaschke, S., García, M.A., Jordan, P., Martín, M.P. and Printzen, C., 2011, Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeate, Mol. Ecol. 20: 1208-1232.

Hawksworth, D.L. and Hill, D.J., 1984, The Lichen-Forming Fungi, Chapman and Hall, New York.

Hawksworth, D.L. and Rose, F., 1970, Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens, Nature 227: 145-148.

Jahrat, W., 2003, Chemical property of hot spring in Thailand, Academic report, Department of Mineral Resource, Bangkok, 80 p. (in Thai)

Jariangprasert, S., 2014, Preliminary lichen, Maejo University, Chiang Mai. 323 p. (in Thai)

Johansson, P., Rydin, H. and Thor, G., 2007, Tree age relationships with epiphytic lichen diversity and lichen life history traits on ash in southern Sweden, Ecoscience 14: 81-91.

Kanjoem, R., 2009, Lichen diversity and monitoring of sulphur dioxide around Mae Moh power plant area, Mae Moh district, Lampand province, in 2009, Master Thesis, Chiang Mai University, Chiang Mai, 98 p. (in Thai)

Karnchanawanich, S., 2010, Air Detective: Handbook of Lichen in Bangkok, Green World Foundation, Bangkok, 112 p. (in Thai)

Marmor, L. and Randlane, T., 2007, Effects of road traffic on bark pH and epiphytic lichens in Tallinn, Folia Cryptogamica Estonica 43: 23-37.

Muggia, L., Vancurova L., Škaloud, P., Peksa, O., Wedin, M. and Grube, M., 2013, The symbiotic playground of lichen thalli – A highly flexible photobiont association in rock-inhabiting lichens, FEMS Microbiol. Ecol. 85: 313-323.

Muggia, L., Perez-Ortega S., Kopun, T., Zellnig, G. and Grube, M., 2014, Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi, Ann. Bot. 114: 463-475.

Muangsan, N., 2013, Diversity of Lichen Species in Community Forest and Ancient Momuments of Nakhon Chai Bu Rin, Research Report, Suranaree University, Nakhon Ratchasrima, 105 p. (in Thai)

Nimis, P.L. and Purvis, O.W., 2002, Monitoring lichens as indicators of pollution, pp. 7-10, In Nimis, P.L., Scheidegger, C. and Wolseley, P.A. (Eds.) Monitoring with Lichens – Monitoring Lichens, NATO Science Series (Series IV: Earth and Environmental Sciences), Vol. 7, Springer, Dordrecht.

Nimis, P.L., Scheidegger, C. and Wolseley, P., 2002, Monitoring with Lichens – Monitoring Lichens, NATO Science Series (Series IV: Earth and Environmental Sciences), Vol. 7, Springer, Dordrecht, 407 p.

Peksa, O. and Skaloud, P., 2011, Do photobionts influence the ecology of lichens?: A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae), Mol. Ecol. 20: 3936-3948.

Rambold, G., Friedl, T. and Beck, A., 1998, Photobionts in lichens: possible indicators of phylogenetic relationships?, Bryologist 101: 392-397.

Saipunkaew, W., Wolseley, P.A. and Chimonides, P.J., 2005, Epiphytic lichens as indicators of environmental health in the vicinity of Chiang Mai city, Thailand, Lichenologist 37: 345-356.

Saipunkaew, W., Wolseley, P.A., Chimonides, P.J., and Boonpragob, K., 2007, Epiphytic macrolichens as indicators of environmental alteration in northern Thailand, Environ. Pollut. 146: 366-374.

Silprasit, K., Duangjai, W., Ngamniyom, A., Kroeksakul, P., Thumajitsakul, S., Sriyapai, T. and Tuntates, U., 2013, Diversity of lichen surrounding nature - based tourism area in Khun Dan Prakan Chon Dam, Nakhon Nayok Province, Thai J. Forest. 32(Supplementary): 85-96. (in Thai)

Thor, G., Johansson, P. and Jönsson, M.T., 2010, Lichen diversity and red-listed lichen species relationships with tree species and diameter in wooded meadows, Biodiv. Conserv. 19: 2307-2328.

Vargas Castillo, R. and Beck, A., 2012, Photobiont selectivity and specificity in Caloplaca species in a fog-induced community in the Atacama Desert, North Chile, Fungal Biol. 116: 665-676.

Verein Deutscher Ingenieure (VDI), 1995, VDI 3799 Part 1, Measurement of Immission Effects, Measurement and Evaluation of Phytotoxic Effect of Ambient Air Pollution (Immission) with Lichen: Mapping of Lichen for Assessment of the Air Quality, Verein Deutscher Ingenieure, Dusseldorf.

Werth, S. and Sork, V.L., 2010, Identity and genetic structure of the photobiont of the epiphytic lichen Ramalina menziesii on three oak species in southern California,

Am. J. Bot. 97: 821-830.

Wirtz, N., Lumbsch, H.T., Green, T.G.A., Türk, R., Pintado, A., Sancho, L. and Schroeter, B., 2003, Lichen fungi have low cyanobiont selectivity in maritime Antarctica, New Phytol. 160: 177-183.

Wolseley, P.A. and Aguirre-Hudson, B., 1997, The ecology and distribution of lichens in tropical deciduous and evergreen forests of northern Thailand, J. Biogeo. 24: 327-343.

Yahr, R., Vilgalys, R. and de Priest, P.T., 2006, Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis, New Phytol. 171: 847-860.