Efficacy of Antagonistic Bacillus spp. Isolates on Growth Promotion of Musa (ABB group) ‘Kluai Hin’ and Vermicompost Granule Production
Main Article Content
Abstract
The objective of this research was to study the ability of Bacillus spp. isolate JK62, JK106, KB1-2 B4, JK127, JK74, YH3-2 B2, and YH3-2 B4 to promote the growth of Musa (ABB group) ‘Kluai Hin’ under greenhouse conditions and produce vermicompost granule. At a concentration of 108 CFU/ml, Bacillus spp. isolates were used to soak roots of 1-month-old micro-propagated ‘Kluai Hin’. After five weeks of transplanting, the results showed that the Bacillus spp. isolate JK74 and YH3-2B2 significantly promoted the height of the test plants, but there were no significant differences in fresh and dry weight compared to the control treatments. Bacillus spp. isolates JK74, YH3-2B2, and JK106 were used to produce vermicompost granule formula V+JK74, V+YH3-2B2, and V+JK106. Sporulating Bacillus spp. cells were enriched in vermicompost by spraying during the crushing and granulating process and after the granulating process. The fertilizers were mixed in the planting material and used to grow a 1-month-old micro-propagated banana. After seven weeks of transplanting, it was found that all Bacillus spp.-enriched vermicompost granules significantly increased the height of the test plants compared with other treatments. The formula V+JK106 and V+JK74 significantly increased the fresh weight of the test plants compared to formula V (non-Bacillus enriched vermicompost granule), but there were no significant differences in dry weight.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของคณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ข้อความที่ปรากฏในแต่ละเรื่องของวารสารเล่มนี้เป็นเพียงความเห็นส่วนตัวของผู้เขียน ไม่มีความเกี่ยวข้องกับคณะวิทยาศาสตร์และเทคโนโลยี หรือคณาจารย์ท่านอื่นในมหาวิทยาลัยธรรมศาสตร์ ผู้เขียนต้องยืนยันว่าความรับผิดชอบต่อทุกข้อความที่นำเสนอไว้ในบทความของตน หากมีข้อผิดพลาดหรือความไม่ถูกต้องใด ๆ
References
Ahemad, M., & Kibret, M. (2014). Mechanisms and Applications of Plant Growth Promoting Rhizobacteria: Current Perspective. Journal of King Saud University - Science, 26(1), 1-20. doi:10.1016/j.jksus.2013.05.001
Ansari, F.A., & Ahmad, I. (2019). Fluorescent Pseudomonas -FAP2 and Bacillus licheniformis Interact Positively in Biofilm Mode Enhancing Plant Growth and Photosynthetic Attributes. Scientific Reports, 9(1), 1-12. doi:10.1038/s41598-019-40864-4
Arkhipova, T.N., Veselov, S.U., Melentiev, A.I., Martynenko, E.V., & Kudoyarova, G.R. (2005). Ability of Bacterium Bacillus subtilis to Produce Cytokinins and to Influence the Growth and Endogenous Hormone Content of Lettuce Plants. Plant and Soil, 272(1), 201-209. doi:10.1007/s11104-004-5047-x
Athinuwat, D. (2013). Beneficial Microbes in Agriculture. Thai Journal of Science and Technology, 2(1), 18-35. doi:10.14456/tjst.2013.15 (in Thai)
Chagas, A.F., Oliveira, A.G., Oliveira, L.A., Santos, G.R., Chagas, L.F.B., Lopas, A.L., & Luz, J. (2015). Production of Indole-3-Acetic Acid by Bacillus isolated from Different Soils. Bulgarian Journal of Agricultural Sciences, 21(2), 282-287. Retrieved from www.researchgate.net/publication/274834269
Chandini, ., Kumar, R., Kumar, R., & Prakash, O. (2019). The Impact of Chemical Fertilizers on our Environment and Ecosystem. Research Trends in Environmental Science, 69-86. Retrieved from www.researchgate.net/publication/331132826
Department of Agriculture. (2008). Organic Fertilizer Analysis Manual. Bangkok: Agricultural Production Sciences Research and Development Division. (in Thai)
Department of Intellectual Property. (2011). Gluay Hin Bannang Sata. Retrieved from https://www.ipthailand.go.th/images/781/bunnangstar.pdf (in Thai)
Glick, B.R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 1-15. doi:10.6064/2012/963401
Hadiwiyono, & Widono, S. (2012). Endophytic Bacillus: the Potentiality of Antagonism to Wilt Pathogen and Promoting Growth to Micro-Plantlet of Banana in Vitro. BIOMIRROR, 3(6), 1-4. Retrieved from https://www.bmjournal.inBM/Vol.3/June 2012/bm-1015180212
Hernandez, J.P., de-Bashan, L.E., Rodriguez, D.J., Rodriguez, Y., & Bashan, Y. (2009). Growth Promotion of the Freshwater Microalga Chlorella vulgaris by the Nitrogen-fixing, Plant Growth-promoting Bacterium Bacillus pumilus from Arid Zone Soils. European Journal of Soil Biology, 45(1), 88-93. doi:10.1016/j.ejsobi.2008.08.004
Joshi, A., Andharia, K., Patel, P., & Kotadiya, R. (2019). Plant Growth Promoting Rhizobacteria: Mechanism, Application, Advantages and Disadvantages. New Delhi: Daya Publishing House® & Astral International Pvt. Ltd.
Karagöz, F.P., Dursun, A., Tekiner, A., Kul, R., & Kotan, R. (2019). Efficacy of vermicompost and/or plant growth promoting bacteria on the plant growth and development in gladiolus. Ornamental Horticulture, 25(2), 180-188. doi:10.14295/oh.v25i2.2023
Kudoyarova, G.R., Vysotskaya, L.B., Arkhipova, T.N., Kuzmina, L.Y., Galimsyanova, N.F., Sidorova, L.V., ... & Veselov, S.Y. (2017). Effect of Auxin Producing and Phosphate Solubilizing Bacteria on Mobility of Soil Phosphorus, Growth Rate, and P Acquisition by Wheat Plants. Acta Physiologiae Plantarum, 39(1), 253–261. doi:10.1007/s11738-017-2556-9
Laopha, A., Sangdee, A., Ponpang-Nga, P., Rattanapolsan, L., & Kawicha, P. (2021, January). Screening of the Antagonistic Bacillus spp. Isolated from Banana Rhizosphere Soil for the Control of Banana Blood Disease. In C. Tantikitti (Ed.), The 1st International Conference on Sustainable Agriculture and Aquaculture for Well Being and Food Security (pp. 69). Bangkok: Prince of Songkla University.
Loikaeo, N., & Chaisakdanugull, C. (2016, April). Properties of the Kluai Hin Flour and Kluai Hakmuk Flour and their Application in Fresh. In A. Yamkesorn (Ed.), RSU National Research Conference (pp. 468-476). Bangkok: Rangsit University. doi:10.14458/RSU.res.2016.98 (in Thai)
Mohite, B. (2013). Isolation and Characterization of Indole Acetic Acid (IAA) Producing Bacteria from Rhizospheric Soil and Its Effect on Plant Growth. Journal of Soil Science and Plant Nutrition, 13(3), 638-649. doi:10.4067/S0718-95162013005000051
Muangkaewngam, A. (2014). Micropropagation of Saba (Musa sapientum Lin.) In Vitro through Shoot Tip Culture. Songklanakarin Journal of Plant Sciences, 1(3), 24-27. Retrieved from natres.psu.ac.th/Department/PlantScience/sjps/archive.php?year=1&issue=3&Page=1 (in Thai)
Namburi, N., & Sukjantra, J. (2006). Product Development from Klouy Hin and Factors of Sale Promotion. Journal of Yala Rajabhat University, 1(1), 30-37. Retrieved from: https://so04.tci-thaijo.org/index.php/yru_human/article/view/124691 (in Thai)
Olanrewaju, O.S., Glick, B.R., & Babalola, O.O. (2017). Mechanisms of Action of Plant Growth Promoting Bacteria. World Journal of Microbiology and Biotechnology, 33(11), 197. doi:10.1007/s11274-017-2364-9
Omer, A.M. (2010). Bioformulations of Bacillus spores for Using as Biofertilizer. Life Sciences Journal, 7(4), 124-131. Retrieved from: https://www.researchgate.net/publication/265890977
Radhakrishnan, R., & Lee, I.J. (2016). Gibberellins Producing Bacillus methylotrophicus KE2 Supports Plant Growth and Enhances Nutritional Metabolites and Food Values of Lettuce. Plant Physiology and Biochemistry, 109(1), 181-189. doi:10.1016/j.plaphy.2016.09.018
Richardson, A.E., Barea, J.M., Neill, A.M.M., & Prigent-Combaret, C. (2009). Acquisition of Phosphorus and Nitrogen in the Rhizosphere and Plant Growth Promotion by Microorganisms. Plant and Soil, 321(1), 305-339. doi:10.1007/s11104-009-9895-2
Sansinenea, E. (2019). Bacillus spp.: As Plant Growth-Promoting Bacteria. Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms, 225-237. doi:10.1007/978-981-13-5862-3_11
Savci, S. (2012). Investigation of Effect of Chemical Fertilizers on Environment. APCBEE Procedia, 287-292. doi:10.1016/j.apcbee.2012.03.047
Shahzad, R., Waqas, M., Khan, A.L., Asaf, S., Khan, M.A., Kang, S.M., ... & Lee, I.J. (2016). Seed-borne Endophytic Bacillus amyloliquefaciens RWL-1 Produces Gibberellins and Regulates Endogenous Phytohormones of Oryza sativa. Plant Physiology and Biochemistry, 106(1), 236-243. doi:10.1016/j.plaphy.2016.05.006
Sharma, N., & Singhvi, R. (2017). Effects of Chemical Fertilizers and Pesticides on Human Health and Environment: A Review. International Journal of Agriculture, Environment and Biotechnology, 10, 675-680. doi:10.5958/2230-732X.2017.00083.3
Shen, F., Zhu, T.Z., Teng, M.J., Chen, Y., Liu, M.Q., Hu, F., & Li, H.X. (2016). Effects of Interaction Between Vermicompost and Probiotics on Soil Property, Yield and Quality of Tomato. Journal of Applied Ecology, 27(2), 484-490. Retrieved from pubmed.ncbi.nlm.nih.gov/27396121/
Souza, R., Ambrosini, A., & Passaglia, L.M.P. (2015). Plant Growth-promoting Bacteria as Inoculants in Agricultural Soils. Genetics and Molecular Biology, 38(4), 401-419. doi:10.1590/S1415-475738420150053
Suliasih, & Widawati, S. (2020, October). Isolation of Indole Acetic Acid (IAA) Producing Bacillus siamensis from Peat and Optimization of the Culture Conditions for Maximum IAA Production. The 9th International Symposium for Sustainable Humanosphere (pp.1-12). Indonesia: IOP Publishing. doi:10.1088/1755-1315/572/1/012025
Susilowati, D.N., Rayanti, E.I., Setyowati, M., & Mulya, K. (2018). Indole-3-Acetic Acid Producing Bacteria and Its Application on the Growth of Rice. Agricultural and Food Sciences. doi:10.1063/1.5050112
Teeruam, P., & Rattana, K. (2018). Effect of Bacillus pumilus on Growth of Rice (Oryza sativa L.) cv. Homnil. Khon Kaen Agricultural Journal, 46(1), 533-539. Retrieved from https://ag2.kku.ac.th/kaj/PDF.cfm?filename=P22%20Agr37.pdf&id=3063&keeptrack=1 (in Thai)
Tensingh, B.N., & Muthulakshmi, P. (2017). Effect of Microbially Enriched Vermicompost on the Growth and Biochemical Characteristics of Okra (Abelmoschus esculentus (L.) moench). Advances in Plants and Agriculture Research, 6(5), 147-152. doi:10.15406/apar.2017.06.00228
Tiwari, S., Prasad, V., & Lata, C. (2019). Bacillus: Plant Growth Promoting Bacteria for Sustainable Agriculture and Environment. doi:10.1016/B978-0-444-64191-5.00003-1
Velivelli, S.L.S., Sessitsch, A., & Prestwich, B.D. (2014). The Role of Microbial Inoculants in Integrated Crop Management Systems. Potato Research, 57(3), 291-309. doi:10.1007/s11540-014-9278-9
Wamaedeesa, R., & Deramae, S. (2011). Multiplication of Kluai Hin (Musa sapientum Linn.) by Tissue Culture. Princess of Naradhiwas University Journal, 3(3), 47-59. Retrieved from journal.pnu.ac.th/ojs/index.php/pnujr/article/view/95/0 (in Thai)
Yu, X., Ai, C., Xin, L., & Zhou, G. (2011). The Siderophore-producing Bacterium, Bacillus subtilis CAS15, has a Biocontrol Effect on Fusarium wilt and Promotes the Growth of Pepper. European Journal of Soil Biology, 47(2), 138-145. doi:10.1016/j.ejsobi.2010.11.001
Zahra, M.T., Aftab, A., Asad, S.A., Tariq, S., Tauseef, T., & Muhammad, A. (2019). Vermicompost Augmented with Plant Growth Promoting Rhizobacteria Improved Soil Fertility and Growth of Brassica rapa. International Journal of Agriculture and Biology, 22(6), 1645-1654. Doi:10.17957/IJAB/15.1246