สภาวะที่เหมาะสมต่อกิจกรรมไฟเตสจากยีสต์อีพิไฟต์ Rhodotorula mucilaginosa ZML2-31และสมบัติในการปลดปล่อยฟอสเฟต

Main Article Content

รัฐดา จันทร์กลั่น
ศศิธร จินดามรกฎ
สาวิตรี ลิ่มทอง


Epiphytic yeast ZML2-31, isolated from corn phylloplane, exhibited high activity of 46.88 U/mL extracellular and 31.25 U/mL cell bound phytase when grown on LMM supplemented with 0.5 %
Na-phytate at 24 and 48 h of cultivation, respectively. The optimal pH and temperature of crude phytase were pH 4.0 and 40˚C, respectively. The residual phytase activities were more than 80% at 30-60 ˚C for 2 h. Storage stability of phytase was retained more than 75% of the initial activity after 18 days at storage temperature ≤ 30 ˚C. Addition of crude phytase to soybean and chickpea significantly enhanced inorganic phosphate liberation compared with control. Sequence analysis of D1/D2 domain of 26S rRNA gene revealed that the isolate ZML2-31 was highly related to Rhodotorula mucilaginosa with sequence identity of 99%.


Download data is not yet available.

Article Details

How to Cite
จันทร์กลั่น ร., จินดามรกฎ ศ., & ลิ่มทอง ส. (2022). สภาวะที่เหมาะสมต่อกิจกรรมไฟเตสจากยีสต์อีพิไฟต์ Rhodotorula mucilaginosa ZML2-31และสมบัติในการปลดปล่อยฟอสเฟต. Thai Journal of Science and Technology, 10(4), 388–401. https://doi.org/10.14456/tjst.2021.31


Alkarawi, H. H., Zotz, G., 2014, Phytic acid in green leaves, Plant Biol. 16:697–701.

Broch, J., Nunes, R. V., Eyng, C., Pesti, G. M., de Souza, C., Sangalli, G. G., Fascina, V. and Teixeira, L., 2018, High level of dietary phytase improves broiler performance. Anim. Feed Sci. Technol. 244: 56-65.

Chaud, L. C., Lario, L. D., Bonuqli-Santos, R. C., Sette, L. D., Pessoa Junior, A. and Felipe, M. D., 2016, Improvement in extracellular protease production by the marine Antarctic yeast Rhodotorula mucilaginosa L7, N. Biotechnol. 33: 807-814.

Chitra, U., Vimala, V., Singh, U. and Geervani, P., 1995, Variability in phytic acid content and protein digestibility of grain legumes, Plant Foods Hum. Nutr. 47: 163-172.

Dvorakova, J., 1998, Phytase: sources, preparation and exploitation, Folia Microbiol. 43: 323-338.

Felsenstein, J., 1985, Confidence limits on phylogenies: An approach using the bootstrap, Evolution. 39:783-791.

Heinonen, J.K. and Lahti, R.J., 1981, A new convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase, Anal. Biochem. 113: 313-317.

Ingelmann, C. J., Witzig, M., MÖhring, J., Schollenberger, M., KÜhn, I. and Rodehutscord, M., 2019, Phytate degradation and phosphorus digestibility in broilers and turkeys fed different corn sources with or without added phytase, Poult. Sci. 98: 912–922.

Jongbloed, A.W., Mroz, Z. and Memme, P.A., 1992, The effect of supplementary Aspergillus niger phytase in diets for pigs on concentration and apparent digestibility of dry matter, total phosphorus, and phytic acid in different sections of the alimentary tract, J. Anim. Sci. 70: 1159-1168.

Kimura, M., 1980, A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol. 16:111-120.

Li, Y.D., Awati, A., Schulze, H. and Partridge, G., 2015, Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors, J. Sci. Food. Agric. 95: 878–896.

Li, X., Chi, Z., Lui, Z. Yan, K. and Li, H., 2008, Phytase production by a marine yeast Kodamaea ohmeri BG3, Appl. Biochem. Biotechnol. 149: 183-193.

Li, Y. D., Villca, B., Sewalt, V., de Kreij, A., Marchal, L., Velayudhan, D. E., Sorg, R. A., Christensen, T., Mejldal, R., Nikolaev, I., Pricelius, S., Kim, H. S., Haaning, S., Sørensen, J. F. and Lizardo, R., 2020, Functionality of a next generation biosynthetic bacterial 6-phytase in enhancing phosphorus availability to weaned piglets fed a corn-soybean meal-based diet without added inorganic phosphate, Anim. Nutr. 6: 24-30.

Limtong, S., Kaewwichian, R., Yongmanitchai, W. and Kawasaki, H., 2014, Diversity of culturable yeasts in phylloplane of sugar cane in Thailand and their capability to produce indole-3-acetic acid, World J. Microbiol. Biotechnol. 30: 1785-1796.

Maas, R. M., Verdegem, M. C. J., Li, Y. D. and Schrama, J. W., 2018, The effect of phytase, xylanase and their combination on growth performance and nutrient utilization in Nile tilapia, Aquaculture. 487: 7-14.

Maga, J. A., 1982, Phytate: its chemistry, occurrence, food interactions, nutritional significance, and methods of analysis, J. Agric. Food Chem. 30: 1-9.

McCormack, P.J., Wildman, H.G. and Jeffries, P., 1994, Production of antibacterial compounds by phylloplane-inhabiting yeasts and yeastlike fungi, Appl. Environ. Microbiol. 60: 927-931.

Mesina, V. G. R., Lagos, L. V., Sulabo, R. C., Walk, C. L. and Stein, H. H., 2019, Effects of microbial phytase on mucin synthesis, gastric protein hydrolysis, and degradation of phytate along the gastrointestinal tract of growing pigs, J. Anim. Sci. 97: 756–767.

Miyamoto, T., Kawahara, M. and Minamisawa, K., 2004, Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis, Appl. Environ. Microbiol. 70: 6580-6586.

Mullaney, E. J. and Ullah, A. H. J., 2003, The term phytase comprises several different classes of enzymes, Biochem. Biophys. Res. Commun. 132: 179-184.

Olstorpe, M., SchnÜrer, J. and Passoth, V., 2009, Screening of yeast strains for phytase activity, FEMS Yeast Res. 9: 478-488.

Pable, A., Gujar, P. and Khire, J. M., 2014, Selection of phytase producing yeast strains for improved mineral mobilization and dephytinization of chickpea flour, J. Food Biochem. 38: 18-27.

Pavlova, K., Gargova, S., Hristozova, T. and Tankova, Z., 2008, Phytase from Antarctic yeast strain Cryptococcus laurentii AL27, Folia Microbiol. 53: 29-34.

Pires, E. B. E., de Freitas, A. J., Souza F. F., Salgado, R. L., Guimarães, V. M., Pereira, F. A. and Eller, M. R., 2019, Production of fungal phytases from agroindustrial byproducts for pig diets, Sci. Rep. 9:9256. Published online 2019 Jun25. Doi.org/10.1038/s41598-019-45720-z

Robinson, K. S., Wheals, A. E., Rose, A. H. and Dickinson, J. R., 1996, Unusual inositol triphosphate metabolism in yeast, Microbiol. 142: 1333-1334.

Saitou, N. and Nei, M., 1987, The neighbor-joining method: A new method for reconstructing phylogenetic trees, Mol. Biol. Evol. 4: 406-425.

Sano, K., Fukuhara, H. and Nakamura, Y., 1999, Phytase of the yeast Arxula adeninivorans, Biotechnol. Lett. 21: 33-38.

Shah, P., Bhaysar, K., Soni, S. K. and Khire, J. M., 2009, Strain improvement and up scaling of phytase production by Aspergillus niger NCIM 563 under submerged fermentation conditions, J. Ind. Microbiol. Biotechnol. 36:373–380.

Shamsuddin, A. and Bose, S., 2012, IP6 (Inositol Hexaphosphate) as a signaling molecule, Curr. Signal Transduc. Ther. 7: 289-304.

Staden, J. V., Haan, R.D., Van Zyl, W., Botha, A. and Viljoen-Bloom, M., 2007, Phytase activity in Cryptococcus laurentii ABO 510, FEMS Yeast. 7: 442-448.

Vohra, A. and Satyanarayna, T., 2001, Phytase production by the yeast, Pichia anomala, Biotechnol. Lett. 23: 551-554.

Whipps, J. M., Hand, P., Pink D. and Bending, G.D., 2008, Phyllosphere microbiology with special reference to diversity and plant genotype, J. Appl. Microbiol. 105: 1744-1755.

Xin, G., Glawe, D. and Doty, S.L., 2009, Characterization of three endophytic, indole-3-acetic acid-producing yeasts occurring in Populus trees, Mycol. Res. 113: 973-980.

Yang, Q., Zhang, H., Zhang, X., Zheng, X. and Qian, J., 2015, Phytic acid enhances biocontrol activity of Rhodotorula mucilaginosa against Penicillium expansum contamination and patulin production in apples, Front. Microbiol. 6:1296. Published online 2015 Nov23. Doi:10.3389/fmicb.2015.01296

Yu, P., Wang, X. T. and Liu, J.W., 2015, Purification and characterization of a novel cold-adapted phytase from Rhodotorula mucilaginosa strain JMUY14 isolated from Antarctic, J. Basic Microbiol. 55: 1029-1039.