Optimal Conditions for Phytase Activity from Epiphytic Yeast Rhodotorula mucilaginosaZML2-31 and Their Properties for Phosphate Liberation

Main Article Content

Ruthada Chanklan
Sasitorn Jindamorakot
Savitree Limtong

Abstract

Epiphytic yeast ZML2-31, isolated from corn phylloplane, exhibited high activity of 46.88 U/mL extracellular and 31.25 U/mL cell bound phytase when grown on LMM supplemented with 0.5 %
Na-phytate at 24 and 48 h of cultivation, respectively. The optimal pH and temperature of crude phytase were pH 4.0 and 40˚C, respectively. The residual phytase activities were more than 80% at 30-60 ˚C for 2 h. Storage stability of phytase was retained more than 75% of the initial activity after 18 days at storage temperature ≤ 30 ˚C. Addition of crude phytase to soybean and chickpea significantly enhanced inorganic phosphate liberation compared with control. Sequence analysis of D1/D2 domain of 26S rRNA gene revealed that the isolate ZML2-31 was highly related to Rhodotorula mucilaginosa with sequence identity of 99%.

Article Details

How to Cite
Chanklan, R. ., Jindamorakot, S. ., & Limtong, S. . (2022). Optimal Conditions for Phytase Activity from Epiphytic Yeast Rhodotorula mucilaginosaZML2-31 and Their Properties for Phosphate Liberation. Thai Journal of Science and Technology, 10(4), 388–401. https://doi.org/10.14456/tjst.2021.31
Section
วิทยาศาสตร์ชีวภาพ

References

Alkarawi, H. H., & Zotz, G. (2014). Phytic acid in green leaves. Plant Biology, 16, 697–701.

Broch, J., Nunes, R. V., Eyng, C., Pesti, G. M., de Souza, C., Sangalli, G. G., Fascina, V., & Teixeira, L. (2018). High level of dietary phytase improves broiler performance. Animal Feed Science and Technology, 244, 56-65.

Chaud, L. C., Lario, L. D., Bonuqli-Santos, R. C., Sette, L. D., Pessoa Junior, A., & Felipe, M. D. (2016). Improvement in extracellular protease production by the marine Antarctic yeast Rhodotorula mucilaginosa L7. New Biotechnology, 33, 807-814.

Chitra, U., Vimala, V., Singh, U., & Geervani, P. (1995). Variability in phytic acid content and protein digestibility of grain legumes. Plant Foods for Human Nutrition, 47, 163-172.

Dvorakova, J. (1998). Phytase: sources, preparation and exploitation. Folia Microbiologica, 43, 323-338.

Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783-791.

Heinonen, J. K., & Lahti, R. J. (1981). A new convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Analytical Biochemistry, 113, 313-317.

Ingelmann, C. J., Witzig, M., MÖhring, J., Schollenberger, M., KÜhn, I., & Rodehutscord, M. (2019). Phytate degradation and phosphorus digestibility in broilers and turkeys fed different corn sources with or without added phytase. Poultry Science, 98, 912–922.

Jongbloed, A. W., Mroz, Z., & Memme, P. A. (1992). The effect of supplementary Aspergillus niger phytase in diets for pigs on concentration and apparent digestibility of dry matter, total phosphorus, and phytic acid in different sections of the alimentary tract. Journal of Animal Science, 70, 1159-1168.

Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111-120.

Li, Y. D., Awati, A., Schulze, H., & Partridge, G. (2015). Phytase in non-ruminant animal nutrition: A critical review on phytase activities in the gastrointestinal tract and influencing factors. Journal of the Science of Food and Agriculture, 95, 878–896.

Li, X., Chi, Z., Lui, Z., Yan, K., & Li, H. (2008). Phytase production by a marine yeast Kodamaea ohmeri BG3. Applied Biochemistry and Biotechnology, 149, 183-193.

Li, Y. D., Villca, B., Sewalt, V., de Kreij, A., Marchal, L., Velayudhan, D. E., Sorg, R. A., Christensen, T., Mejldal, R., Nikolaev, I., Pricelius, S., Kim, H. S., Haaning, S., Sørensen, J. F., & Lizardo, R. (2020). Functionality of a next generation biosynthetic bacterial 6-phytase in enhancing phosphorus availability to weaned piglets fed a corn-soybean meal-based diet without added inorganic phosphate. Animal Nutrition, 6, 24-30.

Limtong, S., Kaewwichian, R., Yongmanitchai, W., & Kawasaki, H. (2014). Diversity of culturable yeasts in phylloplane of sugar cane in Thailand and their capability to produce indole-3-acetic acid. World Journal of Microbiology and Biotechnology, 30, 1785-1796.

Maas, R. M., Verdegem, M. C. J., Li, Y. D., & Schrama, J. W. (2018). The effect of phytase, xylanase and their combination on growth performance and nutrient utilization in Nile tilapia. Aquaculture, 487, 7-14.

Maga, J. A. (1982). Phytate: its chemistry, occurrence, food interactions, nutritional significance, and methods of analysis. Journal of Agricultural and Food Chemistry, 30, 1-9.

McCormack, P. J., Wildman, H. G., & Jeffries, P. (1994). Production of antibacterial compounds by phylloplane-inhabiting yeasts and yeastlike fungi. Applied and Environmental Microbiology, 60, 927-931.

Mesina, V. G. R., Lagos, L. V., Sulabo, R. C., Walk, C. L., & Stein, H. H. (2019). Effects of microbial phytase on mucin synthesis, gastric protein hydrolysis, and degradation of phytate along the gastrointestinal tract of growing pigs. Journal of Animal Science, 97, 756–767.

Miyamoto, T., Kawahara, M., & Minamisawa, K. (2004). Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Applied and Environmental Microbiology, 70, 6580-6586.

Mullaney, E. J., & Ullah, A. H. J. (2003). The term phytase comprises several different classes of enzymes. Biochemical and Biophysical Research Communications, 312, 179-184.

Olstorpe, M., SchnÜrer, J., & Passoth, V. (2009). Screening of yeast strains for phytase activity. FEMS Yeast Research, 9, 478-488.

Pable, A., Gujar, P., & Khire, J. M. (2014). Selection of phytase producing yeast strains for improved mineral mobilization and dephytinization of chickpea flour. Journal of Food Biochemistry, 38, 18-27.

Pavlova, K., Gargova, S., Hristozova, T., & Tankova, Z. (2008). Phytase from Antarctic yeast strain Cryptococcus laurentii AL27. Folia Microbiologica, 53, 29-34.

Pires, E. B. E., de Freitas, A. J., Souza, F. F., Salgado, R. L., Guimarães, V. M., Pereira, F. A., & Eller, M. R. (2019). Production of fungal phytases from agroindustrial byproducts for pig diets. Scientific Reports, 9, 9256. doi.org/10.1038/s41598-019-45720-z

Robinson, K. S., Wheals, A. E., Rose, A. H., & Dickinson, J. R. (1996). Unusual inositol triphosphate metabolism in yeast. Microbiology, 142, 1333-1334.

Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425.

Sano, K., Fukuhara, H., & Nakamura, Y. (1999). Phytase of the yeast Arxula adeninivorans. Biotechnology Letters, 21, 33-38.

Shah, P., Bhaysar, K., Soni, S. K., & Khire, J. M. (2009). Strain improvement and up scaling of phytase production by Aspergillus niger NCIM 563 under submerged fermentation conditions. Journal of Industrial Microbiology and Biotechnology, 36, 373–380.

Shamsuddin, A., & Bose, S. (2012). IP6 (Inositol Hexaphosphate) as a signaling molecule. Current Signal Transduction Therapy, 7, 289-304.

Staden, J. V., Haan, R. D., Van Zyl, W., Botha, A., & Viljoen-Bloom, M. (2007). Phytase activity in Cryptococcus laurentii ABO 510. FEMS Yeast Research, 7, 442-448.

Vohra, A., & Satyanarayna, T. (2001). Phytase production by the yeast, Pichia anomala. Biotechnology Letters, 23, 551-554.

Whipps, J. M., Hand, P., Pink, D., & Bending, G. D. (2008). Phyllosphere microbiology with special reference to diversity and plant genotype. Journal of Applied Microbiology, 105, 1744-1755.

Xin, G., Glawe, D., & Doty, S. L. (2009). Characterization of three endophytic, indole-3-acetic acid-producing yeasts occurring in Populus trees. Mycological Research, 113, 973-980.

Yang, Q., Zhang, H., Zhang, X., Zheng, X., & Qian, J. (2015). Phytic acid enhances biocontrol activity of Rhodotorula mucilaginosa against Penicillium expansum contamination and patulin production in apples. Frontiers in Microbiology, 6, 1296. doi:10.3389/fmicb.2015.01296

Yu, P., Wang, X. T.& Liu, J.W. (2015). Purification and characterization of a novel cold-adapted phytase from Rhodotorula mucilaginosastrain JMUY14isolated from Antarctic. Journal of Basic Microbiolofy,.55, 1029-1039.