ฤทธิ์ต้านจุลินทรีย์และต้านอนุมูลอิสระของสารสกัดจากราเอนโดไฟท์และพืชเจ้าบ้าน (บัวหลวง)

Main Article Content

พฤทฐิภร ศุภพล
สิตา ปรีดานนท์
วรรณฤดี หิรัญรัตน์
อัษฎาวุธ หิรัญรัตน์

Abstract

Abstract


This research aims to evaluate the antimicrobial and antioxidant activities of crude extracts from endophytic fungi and their host plant (Nelumbo nucifera). A total of 31 fungal isolates were obtained from 480 segments. All fungal isolates were cultured into potato dextrose broth. Fungal endophytes and plant (petal and leaf) were extracted with ethyl acetate and methanol. Ninety-three extracts from fungal endophyte and four extracts from N. nucifera were determined for their antimicrobial and antioxidant activities by using a colorimetric broth microdilution and DPPH free radical scavenging assay, respectively. The results showed that fungal entophyte extracts are more effective than plant extracts. Cell ethyl acetate extract (CE) obtained from the fungal isolate FL020 (Curvularia geniculata) was the most active extract against MRSA and S. aureus at MIC 4 and 8 µg/ml, respectively. On the other hand, cell methanol extract (CM) from fungal isolate FL014 (Curvularia sp.) had the strongest antioxidant activity with IC50 0.02 mg/ml. This study confirmed that endophytic fungi investigated from N. nucifera could be a potential source of active secondary metabolites. 


Keywords: endophytic fungi; Nelumbo nucifera; antimicrobial activity; antioxidant activity

Article Details

Section
Biological Sciences
Author Biographies

พฤทฐิภร ศุภพล

สาขาวิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยทักษิณ วิทยาเขตพัทลุง ตำบลบ้านพร้าว อำเภอป่าพะยอม จังหวัดพัทลุง 93110

สิตา ปรีดานนท์

ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ (ไบโอเทค) ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

วรรณฤดี หิรัญรัตน์

สาขาวิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยทักษิณ วิทยาเขตพัทลุง ตำบลบ้านพร้าว อำเภอป่าพะยอม จังหวัดพัทลุง 93110

อัษฎาวุธ หิรัญรัตน์

สาขาวิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยทักษิณ วิทยาเขตพัทลุง ตำบลบ้านพร้าว อำเภอป่าพะยอม จังหวัดพัทลุง 93110

References

[1] Kummalue, T., 2012, Difficulties of druge development from Thai herbal medicine, Pharm. Anal. Acta. S15. (doi: 10.4172/2153 -2435.S15-002)
[2] Newman, D.J., Cragg, G.M. and Snader, K.M., 2003, Natural products as sources of new drugs over the period 1981-2002, J. Nat. Prod. 66: 1022-1037.
[3] Gao, X., Zhou, H., Xu, D., Yu, C., Chen, Y. and Qu, L., 2005, High diversity of endophytic fungi from the pharmaceutical plant, Heterosmilax japonica Kunth revealed by cultivation-independent approach, FEMS Microbiol. Lett. 249: 255-266.
[4] Alva, P., McKenzie, E.H.C., Pointing, S.B., Pena-Muralla, R. and Hyde, K.D., 2002, Do sea grasses harbor endophytes: Fungi in marine environments, edited by K.D. Hyde, Fungal Diversity Res. Ser. 7: 167-178.
[5] Aly, A.H., Debbab, A., Kier, J. and Proksch, P., 2010, Fungal endophytes from higher plants: A prolific source of phytochemicals and other bioactive natural products, Fungal Divers. 41: 1-16.
[6] Huang, Y., Wang, J., Li, G., Zheng, Z. and Su, W., 2001, Antitumor and antifungal activities in endophytic fungi isolated from pharmaceutical plants Taxusmairei, Cephalaxusfortunei and Torreyagrandis, FEMS Immunol. Med. Microbiol. 31: 163-167.
[7] Phongcharoen, W., Rukachaisirikul, V., Phongpaichit, S. and Sakayaroj, J., 2007, A new dihydrobenzofuran derivative from the endophytic fungus Botryosphaeria mamane PSU-M76, Chem. Pharm. Bull. 55: 1404-1405.
[8] Rukachisirikul, V., Sommart, U., Phongpai-chit, S., Sakayaroj, J. and Kirtikara, K., 2008, Metabolites from the endophytic fungus Phomopsis sp. PSU-D15. Phytochemistry 69: 783-787.
[9] Kanabkaew, T. and Puetpaiboon, U., 2004, Aquatic plants for domestic wastewater treatment: Lotus (Nelumbo nucifera) and Hydrilla (Hydrilla verticillata) systems, Songklanakarin J. Sci. Technol. 26: 749-756.
[10] Bhardwaj, A. and Modi, K.P., 2015, A review on therapeutic potential of Nelumbo nucifera (Gaertn): The sacres lotus, IJPSR. 7: 42-54.
[11] Supaphon, P., Phongpaichit, S., Rukachaisirikul, V. and Sakayaroj, J., 2013, Antimicrobial potential of endophytic fungi derived from three seagrasses (Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii) from Thailand, PLoS ONE 8(8): e72520. (doi: 10.1371/ journal.pone.0072520).
[12] Premianu, N. and Jaynthy, C., 2014, Antioxidant activity of endophytic fungi isolated from Lannea coromendalica, Int. J. Res. Pham. Sci. 5: 304-308.
[13] O'Donnell, K. Cigelnik, E. Weber, N.S., Trappe, J.M., 1997, Phylogenetic relationships among Ascomycetous truffles and the true and false morels inferred from 18S and 28S ribosomal DNA sequence analysis, Mycologia 89: 48-65.
[14] Matin, K.J. and Rygiewicz, P.T., 2005, Fungal-specific PCR primers developed for analysis ITS region of environmental DNA extracts, BMC Microbiol. 5: 1-11.
[15] Hall, T., 2005, BioEdit: Biological Sequence Alignment Editor for Windows 95/98/NT/ XP, Available Source: http://www.mbio. ncsu.edu/bioedit/page1.html.
[16] Thompson, J.D., Higgins, D.G. and Gibson, T.J., 1994, Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and wwight matrix choice, Nucl. Acids Res. 22: 4673-4680.
[17] Swofford, D.L., 2002, PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4, Sinauer Associates, Sunderland, Massachusetts.
[18] Kishino, H. and Hasegawa, M., 1989, Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea, J. Mol. Evol. 29: 170-179.
[19] Stamatakis, A., 2014, RAxML version 8: A tool for phylogenetic analysis and post analysis of large phylogenies, Bioinfor-matics 30: 1312-1313.
[20] Nylander, J.A.A., 2004, MrModeltest v. 2.0, Evolutionary Biology Centre, Uppsala University, Sweden.
[21] Owen, N.L. and Hundley, N., 2004, Endophytes-the chemical synthesizers inside plants, Sci. Prog. 87: 79-99.
[22] Won, K.J., Lin, H.Y., Jung, S., Cho, S.M., Shin, H.C., Bae, Y.M., Lee, S.H., Kim, H.J., Joen, B.H. and Kim, B., 2012, Antifungal miconazole induces cardiotoxicity via inhibition of APE/REF-1-related pathway in rat neonatal cardiomyocytes, J. Toxicol. Sci. 126: 289-305.
[23] Wilson, W.L., 1998, Isolation of endophytes from seagrasses from Bermuda, M.Sc. Thesis, University of New Brunswick, Canada.
[24] Arjun, P., Priya, S.M., Sivan, P.S.S., Krishnamoorthy, M. and Balasubramanian, K., 2012, Antioxidant and antimicrobial activity of Nelum bonucifera Gaertn. leaf extracts, J. Acad. Indus. Res. 1: 15-18.
[25] Ming-Zhu, Z., Wu, W., Li-Li, J., Ping-Fang, Y. and Ming-Quan, G., 2015, Analysis of flavonoids in Lotus (Nelumbo nucifera) leaves and their antioxidant activity using macroporous resin chromatography coupled with LC-MS/MS and antioxidant biochemical assays, Molecules 20: 10553-10565.
[26] Shukla, K. and Chaturvedi, N., 2016, In vitro antioxidant properties of different parts of Nelumbo nucifera Gaertn. IJAPBC. 5: 196-201.
[27] Kharwar, R.N., Verma, S.K., Mishra, A., Gond, S.K., Sharma, V.K., Afreen, T. and Kumar, A., 2011, Assessment of diversity, distribution and antibacterial activity of endophytic fungi isolated from a medicinal plant, Adeocalymma alliaceum Miers, Symbiosis 55: 39-46.
[28] Bhardwaj, A., Sharma, D., Jadon, N. and Agarwal, P.K., 2015, Antimicrobial and phytochemical screening of endophytic fungi isolated from spike of Pinus roxburghii, AC Microb. 6: 1-9.
[29] Yadav, M., Yadav, A. and Yadav, J.P., 2014, In vitro antioxidant activity and total phenolic content of endophytc fungi isolated from Eugenia jambolana Lam, Asian Pac. J. Trop. Med. 7: 256-261.
[30] Nayak, B.K., 2014, Endophytic fungal enumeration from various leaf samples of a medicinal plant: Ziziphus mauritiana, Int. J. Pharm. Tech. Res. 7: 344-348.
[31] Chen, J.M., Ling, C. and Lu-Ping, Q., 2016, A friendly relationship between endophytic fungi and medicinal plants: A systematic review, Front Microbio. 7: (doi: 10.3389/ fmicb.2016.00906)
[32] Nagda, V., Gajbhiye, A. and Kumar, D., 2017, Isolation and characterization of endophytic fungi from Caltropi sprocera for their antioxidant activity, Asian J. Pharm. Clin. Res. 10: 254-258.
[33] Sunder, J., Dingh, D.R., Jeeyakumar, S., Kundu, A. and De, A.K., 2011, Antibacterial activity in solvent extract of different parts of Morinda citrifolia plant, J. Pharm. Sci Res. 3: 1404-1407.
[34] Abdelfadel, M.M., Khalaf, H.H., Sharoba, A.M. and Assous, M.T.M., 2016, Effect of extraction methods on antiocidant and antimicrobial activities of some spices and herbs extracts, J. Food Technol. Nutr. Sci. 1: 1-14.
[35] Beveridge, T.J., 1999, Structure of Gram-negative cell walls and their derived membrane vesicles, J. Bacteriol. 181: 4725-
4733.
[36] Modarresi-Chahardehi, A., Ibrahim, D., Fariza-Sulaiman, S. and Mousavi, L., 2012, Screening antimicrobial activity of various extracts of Urtica dioica, Rev. Biol. Trop. 60: 1567-1576.
[37] Valle, D.L., Cabrera, E.C., Puzon, J.J.M. and Rivera, W.L., 2016, Antimicrobial activities of methanol, ethanol and supercritical CO2 extracts of Philippine Piper betle L. on clicical isolates of Gram-positive and Gram-negative bacteria with transferable multiple drug resistance, PLos ONE 11: e0146349.