การเปลี่ยนแปลงรูปแบบการแสดงออกของยีนในวิถีสื่อสัญญาณฮอร์โมน Brassinosteroid เพื่อควบคุมการออกดอกของมะพร้าว (Cocos nucifera L.)

Main Article Content

ปริยา มณีประเสริฐ
สุรินทร์ ปิยะโชคณากุล
ศลยา สุขสอาด
จรีรัตน์ มงคลศิริวัฒนา

Abstract

Abstract


To elucidate molecular mechanism to control flowering transition of coconut (Cocos nucifera L.), which has a prolong vegetative growth phase, DDRT-PCR (differential display RT-PCR) was used to identify genes involved in a regulation change from vegetative growth phase to reproductive phase. Comparative expression of genes in somatic apical meristem (SAM) during vegetative growth phase (germination, 4, 6, 12 and 24 months of age) and reproductive phase (36 months of age) of dwarf coconut was performed.Genes encoding enzymes in brassinosteroid signaling showed differentially display expression. SERK1-like (somatic embryogenesis receptor kinase 1 like), was up-regulated in vegetative phase, whereas FEI 1 (LRR-receptor-like serine/threonine-protein kinase FEI 1) and BZR1 (BZR1 homolog 3-like) was up-regulated in reproductive phase. In addition, inactive LRR-RLK (leucine rich repeat receptor like kinase), which functions to control CLAVATA pathway was up-regulated in reproductive phase. This indicated that flowering transition of coconut was controlled by brassinosteroid hormone in coordination with CLAVATA pathway. Monitoring of their expression throughout growth and development was further performed both in dwarf and tall coconuts using quantitative real-time PCR. The result revealed that SERK1-like showed the highest expression at germination stage and its expression decreased during growth and development in both types of coconut. In contrast, FEI 1, inactive LRR-RLK and BZR1 homolog 3-like showed the lowest expression at germination stage and gradually increased in corresponding to growth and development. The highest expression was found at reproductive phase. These indicated that coordination of brassinosteroid signaling genes played a role to regulate phase changes of coconut. Obviously, expression of inactive LRR-RLK in dwarf type was induced earlier and higher than in tall coconut, indicating that shorten vegetative growth phase of dwarf coconut was probably controlled by inactive LRR-RLK expression. 


Keywords: flowering transition; coconut; prolong vegetative growth phase; brassinosteroid hormone

Article Details

Section
Biological Sciences
Author Biographies

ปริยา มณีประเสริฐ

ภาควิชาพันธุศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900

สุรินทร์ ปิยะโชคณากุล

ภาควิชาพันธุศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900

ศลยา สุขสอาด

สาขาวิชาพันธุศาสตร์ ภาควิชาวิทยาศาสตร์ คณะศิลปศาสตร์และวิทยาศาสตร์  มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตกำแพงแสน ตำบลกำแพงแสน อำเภอกำแพงแสน จังหวัดนครปฐม 73140

จรีรัตน์ มงคลศิริวัฒนา

สาขาวิชาพันธุศาสตร์ ภาควิชาวิทยาศาสตร์ คณะศิลปศาสตร์และวิทยาศาสตร์  มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตกำแพงแสน ตำบลกำแพงแสน อำเภอกำแพงแสน จังหวัดนครปฐม 73140

References

[1] Lawson, E.J. and Poethig, R.S., 1995, Shoot development in plant: time for a change, Trends Genet. 11: 263-268.
[2] Simpson, G.G., Gendall, A.R. and Dean, C., 1999, When switch to flowering, Annu. Rev. Cell. Dev. Biol. 15: 519-550.
[3] Araki, T., 2001, Transition from vegetative to reproductive phase, Curr. Opin. Plant Biol. 4: 63-68.
[4] Hackett, W.P., 1985. Juvenility, maturation and rejuvenation in woody plant, Horti. Rev. 7: 109-155.
[5] Martin-Trillo, M. and Martinez-Zapater, J.M., 2002, Growing up fast: manipulating the generation time of trees, Curr. Opin. Biotechnol. 13: 151-155.
[6] Clarke, J.H., Tack, D., Findlay, K., van Montagu, M. and van Lijsebettens, M., 1999, The SERRATE locus controls the formation of the early juvenile leaves and phase length in Arabidopsis, Plant J. 20: 493-501.
[7] Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H.L. and Poethig, R.S., 2004, SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis, Genes Dev. 18: 2368-2379.
[8] Bohmert, K., Camus, I., Bellini, C., Bouchez, D., Caboche, M. and Benning, C., 1998, AGO1 defines a novel locus of Arabidopsis controlling leaf development, EMBO. J. 17: 170-180.
[9] Telfer, A. And Poethig, R.S., 1998, HASTY: A gene that regulates the timing of shoot maturation in Arabidopsis thaliana, Development 125: 1889-1898.
[10] Berardini, T.Z., Bollman, K., Sun, H. and Poethig, R.S., 2001, Regulation of vegetative phase change in Arabidopsis thaliana by cyclophilin 40, Science 291: 2405-2407.
[11] Hunter, C., Sun, H. and Poethig, R.S., 2003, The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTE family member, Curr. Biol. 13: 1734-1739.
[12] Park, M.Y., Wu, G., Gonzalez-Sulser, A., Vaucheret, H. and Poethig, R.S., 2005, Nuclear processing and export of microRNAs in Arabidopsis, Proc. Nat. Acad. Sci. USA. 102: 3691-3696.
[13] Yang, L., Huang, W., Wang, H., Cai, R., Xu, Y. and Huang, H., 2006, Characterizations of a hypomorphic argonaute1 mutant reveal novel AGO1 functions in Arabi-dopsis lateral organ development, Plant Mol. Biol. 61: 63-78.
[14] Smith, M.R., Willmann, M.R., Wu, G., Berardini, T.Z., Moller, B., Weijers, D. and Poethig, R.S., 2009, Cyclophilin 40 is required for microRNA activity in Arabidopsis, Proc. Nat. Acad. Sci. USA. 106: 5424-5429.
[15] Moon, Y.H., Chen, L., Pan, R.L., Chang, H.S., Zhu, T., Maffeo, D.M. and Sung, Z.R., 2003, EMF genes maintain vegetative develop-ment by repressing the flower program in Arabidopsis, Plant Cell 15: 681-693.
[16] Kim, S.Y., Zhu, T. and Sung, Z.R., 2010, Epigenetic regulation of gene programs by EMF1 and EMF2 in Arabidopsis, Plant Physiol. 152: 516-518.
[17] Xu, S.L., Rahman, A., Baskin, T.I. and Kieber, J.J., 2008, Two leucine-rich repeat receptor kinases mediate signaling linking cell wall biosynthesis and ACC synthase in Arabidopsis, Plant Cell 20: 3065-3079.
[18] Sablowski, R., 2007, The dynamic plant stem cell niches, Curr. Opin. Plant Biol. 10: 639-644.
[19] Durbak, A.R. and Tax, F.E., 2011, CLAVATA signaling pathway receptors of Arabidopsis regulate cell proliferation in fruit organ formation as well as in meristems, Genetics 189: 177-194.
[20] Xing, L.B., Zhang, D., Li, Y.M., Shen, Y.W., Zhao, C.P., Ma, J.J., An, N. and Han, M.Y., 2015, Transcription profiles reveal sugar and hormone signaling pathways mediating flower induction in apple (Malus domestica Borkh), Plant Cell Physiol. 56: 2052-2068.
[21] Hecht, V., Vielle-Calzada, J., Hartog, M., Schmidt, E., Boutilier, K., Grossniklaus, U. and de Vries, S., 2001, The Arabidopsis somatic embryogenesis receptor kinase1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture, Plant Physiol. 127: 803-816.
[22] Brand, U., Fletcher, J.C., Hobe, M., Meyerowitz, E.M. and Simon, R., 2000, Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity, Science 289: 617-619.
[23] Bishop, G.J. and Koncz, C., 2002, Brassinosteroids and plant steroid hormone signaling, Plant Cell 14: 97-110.
[24] Mouradov, A., Cremer, F. and Coupland, G., 2002, Control of flowering time, Plant Cell 14: 111-130.
[25] Mitchell, J.W., Mandava, N., Worley, J.F., Plimmer, J.R. and Smith M.V., 1970, Brassins – a new family of plant hormones from rape pollen, Nature 225: 1065-1066.
[26] Grove, M.D., Spencer, F.G., Rohwededer, W.K., Mandava, N.B., Worley, J.F., Warthen, J.D., Steffens, G.L., Flippen-Anderson, J.L and Cook, J.C., 1979, Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen, Nature 281: 216-217.
[27] Li, J., Nagpal, P., Vitart, V., McMorris, T.C. and Chory, J., 1996, A role for brassinosteroids in light-dependent development of Arabidopsis, Science 272: 398-401.
[28] Azpiroz, R., Wu, Y., Cascio, J.C.L and Feldmann, K.A., 1998, An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation, Plant Cell 10: 219-230.
[29] Turk, E.M., Fujioka, S., Seto, H., Shimada, Y., Takatsuto, S., Yoshida, S., Wang, H., Torres, Q.I., Ward, J.M., Murthy, G., Zhang, J., Walker, J.C. and Neff, M.M., 2005, BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms, Plant J. 42: 23-34.
[30] Domagalska, M.A., Schomburg, F.M., Amasino, R.M., Vierstra, R.D., Nagy, F. and Davis, S.J., 2007, Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering, Development 134: 2841-2850.
[31] Li, J. and Chory, J., 1997, A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction, Cell 90: 929-938.
[32] Yu, X., Li, L., Li, L., Guo, M., Chory, J. and Yin, Y., 2008, Modulation of brassinosteroid-regulated gene expression by Jumonji domain containing proteins ELF6 and REF6 in Arabidopsis, Proc. Nat. Acad. Sci. USA. 105: 7618-7623.
[33] Clouse, S.D., 2008, The molecular intersection of brassinosteroid regulated growth and flowering in Arabidopsis, Proc. Nat. Acad. Sci. USA. 105: 7345-7346.