Effect of Sludge Retention Time on Behavior of the Acinetobacter spp.

Main Article Content

ฉัตรลดา เพียซ้าย
นิตยา บุญเทียน
ธันย์ชนก พรดอน
Mohamad Padri

Abstract

The aim of this project is to study effect of sludge retention time on behavior of the phosphorus accumulating organisms (PAOs) in enhanced biological phosphorous removal (EBPR) processes. Anaerobic-anoxic-aerobic conditions were combined in the EBPR process with acetic acid as a carbon source for synthetic wastewater through 20-day and 60-day SRT. The results revealed that the PAOs in EBPR were Acinetobacter baumannii and Acinetobacter spp. in both SRT 20 and 60 days. The activity of PAOs in anaerobic conditions resulted ortho-P released and uptake of ortho-P in an anoxic and aerobic conditions at 60 days SRT was higher than that of 20 days, those equal to 1.66 and 1.57 times, respectively. The paired t-test of total phosphorus (TP) removal showed a significant difference between SRT 20 and 60 days (p <0.05). The SRT of 60 days was 1.23 times higher than that of the 20-day SRT where the efficiency of total phosphorus removal was 65.69 % in SRT 60 days and 53.26 % in SRT 20 days. Total nitrogen (TN) and total chemical oxygen demand (TCOD) removals were significantly different under SRT 20 and 60 days (p <0.05). The removal efficiencies of TN and TCOD reached the average more than 98.67 %. It was concluded that 60-day SRT was more effective to remove TP TN and TCOD than 20-day SRT, because the amount of PAOs increased in 60 days SRT and the observed phosphate released in anaerobic conditions. Eventually, the amount of PAOs affects the efficiency of phosphorus removal. This result can be referred as a guideline to control the EBPR system specifically in wastewater treatment systems around Thailand.

Downloads

Download data is not yet available.

Article Details

Section
วิทยาศาสตร์ชีวภาพ
Author Biographies

ฉัตรลดา เพียซ้าย

สาขาวิชาวิศวกรรมสิ่งแวดล้อม มหาวิทยาลัยเทคโนโลยีสุรนารี ตำบลสุรนารี อำเภอเมือง จังหวัดนครราชสีมา 30000

นิตยา บุญเทียน

สาขาวิชาวิศวกรรมสิ่งแวดล้อม มหาวิทยาลัยเทคโนโลยีสุรนารี ตำบลสุรนารี อำเภอเมือง จังหวัดนครราชสีมา 30000

ธันย์ชนก พรดอน

สาขาวิชาวิศวกรรมสิ่งแวดล้อม มหาวิทยาลัยเทคโนโลยีสุรนารี ตำบลสุรนารี อำเภอเมือง จังหวัดนครราชสีมา 30000

Mohamad Padri

สาขาวิชาวิศวกรรมสิ่งแวดล้อม มหาวิทยาลัยเทคโนโลยีสุรนารี ตำบลสุรนารี อำเภอเมือง จังหวัดนครราชสีมา 30000

References

[1] Ministry of Natural Resource and Environment, Domestic Wastewater Treatment System, Available Source: http://mews.onep.go.th/default.aspx, March 16, 2016. (in Thai)
[2] Pollution Control Department, 2010, Announcement of the Pollution Control Department: Design Criteria of Wastewater Collection and Integrated Wastewater System of Domestic, Ministry of Natural Resources and Environment, Bangkok. (in Thai)
[3] Guerrero, J., Guisasola, A. and Baeza, J.A., 2015, Controlled crude glycerol dosage to prevent EBPR failures in C/N/P removal WWTPs, Chem. Eng. J. 271: 114-127.
[4] Wei, Y., Wang, S., Ma, B., Li, X., Yuan, Z., He, Y. and Peng, Y., 2014, The effect of poly-β hydroxyalkanoates degradation rate on nitrous oxide production in a denitrifying phosphorus removal system, Bioresour. Technol. 170: 175-182.
[5] Wang, R., Peng, Y., Cheng, Z. and Ren, N., 2014, Understanding the role of extracellular polymeric substances in an enhanced biological phosphorus removal granular sludge system, Bioresour. Technol. 169: 307-312.
[6] Chaiyaphan, W., 2007, Study of microbial community and the possibility on saline enhanced biological phosphorus removal using sequencing batch reactor system, Proceedings of 45th Kasetsart University Annual Conference, Kasetsart University, Bangkok. (in Thai)
[7] Guerrero, J., Tayà, C., Guisasola, A. and Baeza, J.A., 2012, Glycerol as a sole carbon source for enhanced biological, Water. Res. 46: 2983-2991.
[8] Li, D., Lv, Y., Zeng, H. and Zhang, J., 2016, Effect of sludge retention time on continuous-flow system with enhanced biological phosphorus removal granules at different COD loading, Bioresour. Technol. 219: 14-20.
[9] Piasai, C., Boontian, N., Yingchon, U., Phondon, T. and Padri, M., 2020, Optimum conditions to produce acetic acid from various excess sludge for using in biological phosphorus removal processes, Thai Sci. Technol. J. 28(2): 277-296. (in Thai).
[10] Piasai, C., Boontian, N., Phondon, T. and Padri, M., 2020, Mass balances of biological nutrient removal with extended sludge retention time, Thai Sci. Technol. J. 28(9): 1683-1702. (in Thai)
[11] Wentzel, M.C., Ekama, G.A. and van Marais, G.R., 1992, Processes and modelling of nitrification denitrification biological excess phosphorus removal systems: A review, Water Sci. Technol. 25: 59-82.
[12] Chuang, S.H., Ouyang, C.F., Yuang, H.C. and You, S.J., 1997, Effects of SRT and do on nutrient removal in a combined as-biofilm process, Water Sci. Technol. 36: 19-27.
[13] Puig, S., Coma, M., Monclús, H., van Loosdrecht, M.C.M., Colprim, J. and Balaguer, M.D., 2008, Selection between alcohols and volatile fatty acids as external carbon sources for EBPR, Water Res. 42: 557-566.
[14] Rodrigo, M.A., Seco, A., Ferrer, J. and Penya-Roja, J.M., 1999, The effect of the sludge age on the deterioration of the enhanced biological phosphorus removal process, Environ. Tech. 20: 1055-1063.
[15] Randall, C., Brannan, K., McClintock, S. and Pattarkine, V., 1992, The case for anaerobic reduction of oxygen requirements in biological phosphorus removal systems, Water Environ. Res. 64: 824-833.
[16] Auling, G., Pilz, F., Busse, H.J., Karrasch, S., Streichan, M. and Schön, G., 1991, Analysis of the polyphosphate-accumulating microflora in phosphorus-eliminating, anaerobic-aerobic activated sludge systems by using diaminopropane as a biomarker for rapid estimation of Acinetobacter spp., Appl. Environ. Microbiol. 57: 3585-3592.
[17] Jasna, H., Darko, T., Hanife, B. and Yüksel, O., 2003, Influence of support materials on phosphate removal by the pure culture of Acinetobacter calcoaceticus, Food Technol. Biotechnol. 41: 331-338.
[18] Chen, Y., Liu, Y., Zhou, Q. and Gu, G., 2005, Enhanced phosphorus biological removal from wastewater: Effect of microorganism acclimatization with different ratios of short-chain fatty acids mixture, Biochem. Eng. J. 27: 24-32.
[19] Tasli, R., Artan, N. and Orhon, D., 1997, The influence of different substrates on enhanced biological phosphorus removal in a sequencing batch reactor, Water Sci. Technol. 35: 75-80.
[20] Henze, M., Gujer, W., Mino, T., van Loosdrecht, M.C.M., 2000, Activated Sludge Models ASM1, ASM2, ASM2d and ASM3, Reprint Ed., IWA Publishing, London, 121 p.
[21] Piasai, C., Boontian, N., Phondon, T. and Padri, M., 2020, Mass balances of cod nitrogen and phosphorus in enhanced biological nutrient removal processes, Thai Sci. Technol. J. 28(6): 1029-1048. (in Thai)
[22] Warodomrungsimun, C., Patthanaissara nukool, W., Buayoungyuen, S. and Fongsatitkul, P., 2019, Performance and kinetics of the treating slaughterhouses wastewater using sequencing batch reactor, NUJST 27: 87-97.
[23] Ge, H., Batstone, D.J. and Keller, J., 2015, Biological phosphorus removal from abattoir wastewater at very short sludge ages mediated by novel pao clade comamonadaceae, Water Res. 69: 173-182.
[24] Chuang, S.H., Chang, W.C., Huang, Y.H., Tseng, C.C. and Tai, C.C., 2011, Effects of different carbon supplements on phosphorus removal in low C/P ratio industrial wastewater, Bioresour. Technol. 102: 5461-5465.
[25] Piasai, C., Boontian, N., Yingchon, U. and Pyae, H.A., 2017, Efficiency enhancement of biological phosphorus removal with difference carbon sources, EIT Eng. J. Res. Develop. 28(2): 41-52. (in Thai)
[26] Boontian, N., 2012, Using the Activated Sludge Model 2d (ASM2d) to Understand and Predict the Phosphorus Accumulating Organisms Mechanism in Enhanced Biological Phosphorus Removal in Relation to Disintegrated Sludge as a Carbon Source, Doctoral Dissertation, Cranfield University, Cranfield, 267 p.
[27] Djeribi, R., Bouchloukh, W., Jouenne, T. and Menaa, B., 2012, Characterization of bacterial biofilms formed on urinary catheters, Am. J. Infect. Control. 40: 854-859.
[28] Biswas, D., Tiwari, M. and Tiwari, V., 2019, Molecular mechanism of antimicrobial activity of chlorhexidine against carbapenem-resistant Acinetobacter baumannii. PLoS ONE, 14(10): 1-17.
[29] Jung, M.Y., Park, S.J., Min, D., Kim, J.S., Rijpstra, W.I.C., Sinninghe Damsté, J.S. and Rhee, S.K., 2011, Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil, Appl. Environ. Microbiol. 77: 8635-8647.
[30] Haberman, A., Zelinger, E. and Samach, A., 2017, Scanning electron microscope (SEM) imaging to determine inflorescence initiation and development in olive, Bio-Protocol 7(19): 7 p.
[31] Bin, Z., Bin, X., Zhigang, Q., Zhiqiang, C., Junwen, L., Taishi, G. and Jingfeng, W., 2015, Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor, Sci. Rep. 5: Article No. 12904.
[32] Siau, H., Yuen, K., Ho, P., Wong, S.S.Y. and Woo, P.C.Y., 1999, Acinetobacter bacteremia in Hong Kong: Prospective study and review, Clin. Infect. Dis. 28: 26-30.
[33] Ajao, A.O., Robinson, G., Lee, M.S., Ranke, T.D., Venezia, R.A., Furuno, J.P., Harris, A.D. and Johnson, J.K., 2011, Comparison of culture media for detection of Acinetobacter baumannii in surveillance cultures of critically-ill patients, Eur. J. Clin. Microbiol. Infect. Dis. 30: 1425-1430.
[34] Higgins, P.G., Wisplinghoff, H., Krut, O. and Seifert, H., 2007, A PCR-based method to differentiate between Acinetobacter baumannii and Acinetobacter genomic species 13TU, Clin. Microbiol. Infect. 13: 1199-1201.
[35] Rice, E.W., Baird, R.B. and Eaton, A.D. (Eds.), 2005, Standard Methods for the Examination of Water and Wastewater, 20th Ed., American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, DC.
[36] Yuan, Z., Pratt, S. and Batstone, D.J., 2012, Phosphorus recovery from waste water through microbial processes, Curr. Opin. Biotechnol. 23: 878-883.
[37] Yu, L., 2011, Effect of SRT on nitrogen and phosphorus removal in modified carrousel oxidation ditch process, Adv. Mat. Res. 396-398: 1995-2001.
[38] Li, B. and Wu, G., 2014, Effects of sludge retention times on nutrient removal and nitrous oxide emission in biological nutrient removal processes, Int. J. Environ. Res. Public. Health. 11: 3553-3569.
[39] Zheng, X., Sun, P., Lou, J., Cai, J., Song, Y., Yu, S. and Lu, X., 2013, Inhibition of free ammonia to the granule-based enhanced biological phosphorus removal system and the recoverability, Bioresour. Technol. 148: 343-351.
[40] Piasai, C., Boontian, N., Yingchon, U. and Pyae, H.A., 2017, Effect of acetate as a sole carbon source for enhance biological phosphorus removal, oral presentations, Renewable Energy Sources - Research and Business (RESRB) 2017 Conference, Wrocław.
[41] Espinal, P., Martí, S. and Vila, J., 2012, Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces, J. Hosp. Infect. 80: 56-60.
[42] Nait, C.Y., Mlouka, M., Alexandre, S., Nicol, M., Marti, S., Pestel-Caron, M., Vila, J., Jouenne, T. and Dé, E., 2014, Virstatin inhibits biofilm formation and motility of Acinetobacter baumannii, BMC Microbiol. 14(1): 62.
[43] Pour, N.K., Dusane, D.H., Dhakephalkar, P.K., Zamin, F.R., Zinjarde, S.S. and Chopade, B.A., 2011, Biofilm formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters, FEMS. Immunol. Med. Microbiol. 62: 328-338.
[44] Bin, Z., Bin, X., Zhigang, Q., Zhiqiang, C., Junwen, L., Taishi, G. and Jingfeng, W., 2015, Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor, Sci. Rep. 5: Article No. 12904.
[45] Cole, J.K., Hutchison, J.R., Renslow, R.S., Kim, Y.M., Chrisler, W.B., Engelmann, H.E. and Lindemann, S.R., 2014, Phototrophic biofilm assembly in microbial-mat-derived unicyanobacterial consortia: Model systems for the study of autotroph-heterotroph interactions, Front. Microbiol. 7(5): 109.
[46] Jianlong, W. and Jing, K., 2005, The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGSB reactor, Proc. Biochem. 40: 1973-1978.
[47] Nielsen, P.H., Saunders, A.M., Hansen, A.A., Larsen, P. and Nielsen, J.L., 2012, Microbial communities involved in enhanced biological phosphorus removal from wastewater: A model system in environmental biotechnology, Curr. Opin. Biotechnol. 23: 452-459.
[48] Kortstee, G.J.J., Appeldoorn, K.J., Bonting, C.F.C., van Niel, E.W.J. and van Veen, H.W., 2000, Recent developments in the biochemistry and ecology of enhanced biological phosphorus removal, Biochemistry (Moscow) 65: 332-340.
[49] Valter, T., Mauro, M., John, M. and Roberto, R., 1998. The behavior of polyphosphate accumulating Acineto bacter isolates in an anaerobic-aerobic chemostat, Water Res. 32: 2903-2912.
[50] Georg, A., Frank, P., Hans, J.B., Simone, K., Marlies, S. and Georg, S., 1991, Analysis of the polyphosphate-accumulating microflora in phosphorus-eliminating, anaerobic-aerobic activated sludge systems by using diaminopropane as a biomarker for rapid estimation of Acinetobacter spp., Appl. Environ. Microbiol. 57: 3585-3592.
[51] Marlies, S., Jochen, R.G. and Georg, S., 1990, Polyphosphate-accumulating bacteria from sewage plants with different processes for biological phosphorus removal, FEMS Microbiol. Ecol. 73: 113-124.
[52] Deinema, M.H., van Loosdrecht, M. and Scholten, A., 1985, Some physiological characteristics of Acinetobacter spp. accumulating large amounts of phosphate, Water Sci. Tech. 17: 119-125.
[53] Ohtake, H., Takahashi, K., Tsuzuki, Y. and Toda, K. 1984, Phosphorus release from a pure culture of Acinetobacter calcoace ticus under anaerobic conditions, Environ. Sci. Technol. Lett. 5: 417-424.
[54] Koichi, S., Shinya, M., Satoshi, O., Kensuke, N., Akihiko, T., Satoshi, T. and Akira, H., 2008, Modeling and experimental study on the anaerobic/aerobic/anoxic process for simultaneous nitrogen and phosphorus removal: The effect of acetate addition, Process. Biochem. 43: 605-614.
[55] He, S., Gall, D. L. and McMahon, K.D., 2007, “Candidatus accumulibacter” Population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes, Appl. Environ. Microbiol. 5865-5874
[56] Chan, C., Guisasola, A. and Baeza, J. A., 2017, Enhanced biological phosphorus removal at low sludge retention time in view of its integration in a-stage systems, Water Res. 118: 217-226.
[57] Valverde-Pérez, B., Wágner, D.S., Lóránt, B., Gülay, A., Smets, B.F. and Plósz, B.G., 2016, Short-sludge age ebpr process: Microbial and biochemical process characterization during reactor start-up and operation, Water Res. 104: 320-329.
[58] Lee, D., Kim, M. and Chung, J., 2007, Relationship between solid retention time and phosphorus removal in anaerobic-intermittent aeration process, J. Biosci. Bioeng. 103: 338-344.