การระบุชนิดของเห็ดโคนข้าวตอก (Termitomyces microcarpus) และปลวกเพาะเลี้ยงราที่สัมพันธ์กับเห็ดโคนข้าวตอก

Main Article Content

ณิชารีย์ จันทร์นวล
พรสินี กองทอง
มิ่งขวัญ นิพิฐวัธนะผล
ธารรัตน์ แก้วกระจ่าง
ศศิธร หาสิน


Termite mushrooms are known to have a symbiotic relationship with fungus-growing termites. Despite high diversity of both fungus-growing termites and their fungal symbionts in Thailand, the detail about species identification and systemic study about their relationship is little. Thus, the aims of this study are to identify termite mushrooms and fungus-growing termites using morphological characteristics together with DNA barcoding to confirm species, and to study relationship between fungus-growing termites and termite mushrooms. In this study, we focused on Termitomyces microcarpus collected from Sakaerat Biosphere Reserves We identified 10 samples of T. microcarpus and confirmed that they were identical to Termitomyces sp. Group3 and T. microcarpus in the GenBank database (99-100 % identity), consistent with their morphological characters. Furthermore, we found that four termite species from four termite nests were related with T. microcarpus. The result showed that these mushrooms have low specific interaction with termites because T. microcarpus were related with more than two termite genera (Macrotermes, Odontotermes and Hypotermes). Two of the fungus-growing termite species (Macrotermes annandalei and Hypotermes makhamensis) associated with this mushroom had 97 % identity with the termite species in the databases, suggesting that they were belonging to different subspecies that did not have the sequences in the database. Thus, further study of fungus-growing termites in Thailand will be helpful to increase the information in the database and facilitate species identification by DNA barcoding.


Download data is not yet available.

Article Details

Author Biographies

ณิชารีย์ จันทร์นวล

ภาควิชาพันธุศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900

พรสินี กองทอง

ภาควิชาพันธุศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900

มิ่งขวัญ นิพิฐวัธนะผล

ภาควิชาพันธุศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900

ธารรัตน์ แก้วกระจ่าง

ภาควิชาชีววิทยาป่าไม้ คณะวนศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900

ศศิธร หาสิน

สาขานวัตกรรมการจัดการสิ่งแวดล้อม วิทยาลัยนวัตกรรมการจัดการ มหาวิทยาลัยราชภัฏวไลยอลงกรณ์ ในพระบรมราชูปถัมภ์ ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 13180


[1] Aanen, D.K., Eggleton, P., Rouland-Lefevre, C., Guldberg-Froslev, T., Rosendahl, S. and Boomsma, J.J., 2002, The evolution of fungus-growing termites and their mutualistic fungal symbionts, Proc. Natl. Acad. Sci. 99: 14887-14892
[2] Rouland-Lefèvre, C. and Bignell, D.E., 2001, Cultivation of Symbiotic Fungi by Termites of the Subfamily Macrotermitinae, pp. 731-756, In Seckbach, J. (Ed.), Symbiosis, Kluwer.
[3] Nobre, T., Fernandes, C., Boomsma, J.J., Korb, J. and Aanen, D.K., 2011, Farming termites determine the genetic popular tion structure of Termitomyces fungal symbionts, Mol. Ecol. 20: 2023-2033.
[4] Kayikananta, A. and Mukorn, L., 2552, Termite Mushroom, Termite and Termite Mushroom Culture, Forest Research and Development Bureau, Bangkok, 54 p. (in Thai)
[5] Poulsen, M., Hu, H., Li, C., Chen, Z., Xu, L., Otani, S., Nygaard, S., Nobre, T., Klaubauf, S., Schindler, P.M., Hauser, F., Pan, H., Yang, Z., Sonnenberg, A.S.M., de Beer, Z.W., Zhang, Y., Wingfield, M.J., Grimmelikhuijzen, C.J.P., de Vries, R.P., Korb, J., Aanen, D.K., Wang, J., Boomsma, J.J. and Zhang, G., 2014, Complementary symbiont contributions to plant decomposition in a fungus-farming termite, Proc. Natl. Acad. Sci. 111: 14500-14505.
[6] Nobre, T. and Aanen, D.K., 2012, Fungiculture or termite husbandry? the ruminant hypothesis, Insects 3: 307-323
[7] de Fine Licht, H.H., Andersen, A. and Aanen, D.K., 2005, Termitomyces sp. associated with the termite Macrotermes natalensis has a heterothallic mating system and multinucleate cells, Mycol. Res. 109: 314-318.
[8] Aanen, D.K., 2006, As you reap, so shall you sow: Coupling of harvesting and inoculating stabilizes the mutualism between termites and fungi, Biol. Lett. 2: 209-212.
[9] Pobkwamsuk, M., Thummmarukcharoen, T., Wiriyathannawudhiwong, N., Chotjittrakorn, P., Choeyklin, R., Sawhasan, P., Chuthamas, P. and Boonpratuang, T., 2016, Identification of Hed Khon (genus Termitomyces) in Dong Yai Community Forest, Amnat Charoen province, pp. 747-760, 8th Meeting of the Committee of Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sirindhorn (RSPG). (in Thai)
[10] Aanen, D.K. and Eggleton, P., 2005, Fungus-growing termites originated in African rain forest, Curr. Biol. 15: 851-855.
[11] Sornnuwat, Y. and Thienhirun, S., 2005, Potential species of fungus-growing termites for termite mushroom production in Thailand, pp. 713-720, 43rd Kasetsart University Annual Conference, Bangkok. (in Thai)
[12] Srichaiwong, M., Klinhom, U., Papong, K.B., 2013, Receptacle structure of termite fungus (Termitomyces), KKU Sci. J. 41(4): 928-935. (in Thai)
[13] Wei, T.Z., Tang, B.H. and Yao, Y.J., 2009, Revision of Termitomyces in China, Mycotaxon 108: 257-285.
[14] Sitotaw, R., Mulat, A. and Abate, D., 2015, Morphological and molecular studies on Termitomyces species of Menge district, Asossa zone, Northwest Ethiopia, Sci. Technol. Arts Res. J. 4(4): 49-57.
[15] Ahmad, M., 1965, Termites (Isoptera) of Thailand, Bull. Am. Mus. Nat. Hist. 131: 3-113.
[16] Sornnuwat, Y., Vongkaluang, C. and Takematsu, Y., 2004, A systematic key to termites of Thailand, Kasetsart J. (Nat. Sci.) 38: 349-368.
[17] Hofstetter, V., Clémençon, H., Vilgalys, R. and Moncalvo, J.M., 2002, Phylogenetic analyses of the Lyophylleae (Agaricales, Basidiomycota) based on nuclear and mitochondrial rDNA sequences, Mycol. Res. 106: 1043-1059.
[18] Rouland-Lefevre, C., Diouf, M.N., Brauman, A. and Neyra, M., 2002, Phylogenetic relationships in Termitomyces (family Agaricaceae) based on the nucleotide sequence of ITS: A first approach to elucidate the evolutionary history of the symbiosis between fungus-growing termites and their fungi, Mol. Phylogenet. Evol. 22: 423-429.
[19] Sawhasan, P., Worapong, J. and Vinijsanun, T., 2011, Morphological and molecular studies of selected Termitomyces species collected from 8 districts of Kanchanaburi province, Thailand, Thai J. Agric. Sci. 44(3): 183-196.
[20] Raja, H.A., Miller, A.N., Pearce, C.J. and Oberlies, N.H., 2017, Fungal identification using molecular tools: A primer for the natural products research community, J. Nat. Prod. 80: 756-770.
[21] Ohkuma, M., Yuzawa, H., Amornsak, W., Sornnuwat, Y., Takematsu, Y., Yamada, A., Vongkaluang, C., Sarnthoy, O., Kirtibutr, N., Noparatnaraporn, N., Kudo, T. and Inoue, T., 2004, Molecular phylogeny of Asian termites (Isoptera) of the families Termitidae and Rhinotermitidae based on mitochondrial COII sequences, Mol. Phylogenet. Evol. 31: 701-710.
[22] Makonde, H.M., Boga, H.I., Osiemo, Z., Mwirichia, R., Stielow, J.B., Göker, M. and Klenk, H.P., 2013, Diversity of Termitomyces associated with fungus-farming termites assessed by cultural and culture-independent methods, PLoS ONE 8(2): 1-11.
[23] Lo, N., Kitade, O., Miura, T., Constantino, R. and Matsumoto, T., 2004, Molecular phylogeny of the Rhinotermitidae, Insectes Soc. 51: 365-371.
[24] Liu, H. and Beckenbach, A.T., 1992, Evolution of the mitochondrial cytochrome oxidase II gene among ten orders of insects, Mol. Phylogenet. Evol. 1: 41-52.
[25] Doyle, J.J. and Doyle, J.L, 1987, A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull. 19: 11-15.
[26] Lee, S.B. and Taylor, J.W., 1990, Isolation of DNA from Fungal Mycelia and Single Spores, pp. 282-287, In Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J. (Eds.), PCR Protocols: A Guide to Methods and Applications, Academic Press, San Diego.
[27] White, T.J., Bruns, T., Lee, S. and Taylor, J.W., 1990, Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-322, In Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J. (Eds.), PCR Protocols: A Guide to Methods and Applications, Academic Press, Inc., New York.
[28] Nobre, T., Eggleton, P. and Aanen, D.K., 2010, Vertical transmission as the key to the colonization of Madagascar by fungus-growing termites?, Proc. R. Soc. B Biol. Sci. 277: 359-365.
[29] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J., 1990, Basic local alignment search tool, J. Mol. Biol. 215: 403-410.
[30] Nakamura, T., Yamada, K.D., Tomii, K. and Katoh, K., 2018, Parallelization of MAFFT for large-scale multiple sequence alignments, Bioinformatics 34: 2490-2492.
[31] Hall, T.A., 1999, BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucl. Acids Symp. Ser. 41: 95-98.
[32] Kumar, S., Stecher, G. and Tamura, K., 2016, MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol. 33: 1870-1874.
[33] Taprab, Y., Ohkuma, M., Johjima, T., Maeda, Y., Moriya, S., Inoue, T., Suwanarit, P., Noparatnaraporn, N. and Kudo, T., 2002, Molecular phylogeny of symbiotic basidiomycetes of fungus-growing termites in Thailand and their relationship with the host, Biosci. Biotechnol. Biochem. 66: 1159-1163.
[34] Kimura, M., 1980, A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol. 16: 111-120.
[35] Hebert, P.D.N., Ratnasingham, S. and Jeremy, R., 2003, Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species, Proc. R. Soc. Lond. B 270: 96-99.
[36] Liu, Y., Dietrich, C.H. and Wei, C., 2019, Genetic divergence, population differentiation and phylogeography of the cicada Subpsaltria yangi based on molecular and acoustic data: An example of the early stage of speciation?, BMC Evol. Biol. 19(5): 17 p.
[37] Santos-Zamorano, B., Huanca-Mamani, W. and Vargas, H.A., 2017, Genetic divergence of the pest moth Chloridea virescens (Noctuidae: Heliothinae) feeding on a newly documented host plant in the Atacama desert of Northern Chile, J. Lepid. Soc. 71: 274-278.
[38] Kaewgrajang, T., Hasin, S. and Nipitwattanaphon, M., 2019, Finding Ecological Factors Affecting the Occurrence of Termite Mushrooms and the Distribution of Fungus-growing Termites for Increasing Termite Mushroom Production in the Natural Condition, Research Report, Biodiversity-based Economy Development Office (Public Organization), Bangkok, 96 p. (in Thai)
[39] Bourguignon, T., Lo, N., Sobotnik, J., Ho, S.Y.W., Iqbal, N., Coissac, E., Lee, M., Jendryka, M.M., Sillam-Dussès, D., Krizkova, B., Roisin, Y. and Evans, T.A., 2017, Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics, Mol. Biol. Evol. 34: 589-597.
[40] Tamura, K. and Nei, M., 1993, Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Mol. Biol. Evol. 10: 512-526.
[41] Johnson, R.A., Thomas, R.J., Wood, T.G. and Swift, M.J., 1981, The inoculation of the fungus comb in newly founded colonies of some species of the Macrotermitinae (Isoptera) from Nigeria, J. Nat. Hist. 15: 751-756.
[42] Aanen, D.K., Ros, V.I.D., de Fine Licht, H.H., Mitchell, J., de Beer, Z.W., Slippers, B., Rouland-LeFèvre, C. and Boomsma, J.J., 2007, Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa, BMC Evol. Biol. 7: 115, 11 p.