การคัดเลือกสายพันธุ์ยีสต์ที่ผลิตแคโรทีนอยด์ได้สูงเพื่อผลิตเป็นโปรตีนเซลล์เดี่ยวโดยใช้แหล่งคาร์บอนที่มีราคาถูกเป็นซับสเตรต
Main Article Content
Abstract
Abstract
The six dominant carotenogenic yeast strains were selected from 37 strains of colored yeast. They are named as AQA1-2, AQA4-3, AQA6-4, AQA11-1, AQA14-2 and AQA17-2 which produced 2589±69, 2534±61, 2528±278, 2239±269, 2190±442 and 2755±43 µg/L of carotenoids concentration respectively, after they were cultivated in YM broth with incubated at 30 ˚C, shaking speed of 160 rpm for 96 h. The identification was performed based on nucleotide sequence at D1/D2 region of the large subunit (LSU) rRNA gene. They were identified as Rhodotorula mucilaginosa, Sakaguchia oryzae, Goffeauzyma aciditolerans, Rhodosporidium toruloides, Cystobasidium calyptogenae and R. paludigena, respectively. Several wastes and by-product from industries such as sugarcane blackstrap molasses, rice straw hydrolysate and crude glycerol were used as low-cost carbon sources for carotenoids, the highest concentration was found from AQA1-2 strain and sugarcane blackstrap molasses was the best for carotenoids production. The optimum conditions were 60 g/L molasses, 0.5 g/L (NH4)2SO4, 0.5 g/L KH2PO4 and 0.5 g/L yeast extract. The ß-carotene pigment was observed from all strains and other pigments such as torulene and torularhodin were also found by using thin-layer chromatography. The results of this research can be further studied in advance research and significantly reduce cost for industrial application.
Keywords: carotenoid; low-carbon source; D1/D2 region; yeast
Article Details
References
[2] Astorg, P., 1997, Food carotenoids and cancer prevention: An overview of current research, Trends Food Sci. Technol. 8: 406-413.
[3] Gaziano, J.M. and Hennekens, C.H., 1993, The role of beta-carotene in the prevention of cardiovascular disease, Annu. N.Y. Acad. Sci. 691: 148-155.
[4] Krinsky, N.I. and Johnson, E.J., 2005, Carotenoid actions and their relation to health and disease, Mol. Aspects Med. 26: 459-516.
[5 Olson, J. A., 1999, Carotenoids and human health, Archivos Latino-americanos de Nutricion. 49: 7S-11S.
[6] Bhosale, P. and Gadre, R.V., 2001, ß-carotene production in sugarcane molasses by a Rhodotorula glutinis mutant, J. Ind. Microbiol. Biotechnol. 26: 327-332.
[7] Maldonade, I.R., Rodriguez-Amaya, D.B. and Scamparini, A.R.P., 2008, Carotenoids of yeasts isolated from the Brazilian ecosystem, Food Chem. 107: 145-150.
[8] Dufosse, L., Galaup, P., Yaron, A., Arad, S.M., Blanc, P., Murthy, K.N.C. and Ravishankar, G.A., 2005, Microorganisms and microalgae as sources of pigments for food use: A scientific oddity or an industrial reality, Trends Food Sci. Technol. 16: 389-406.
[9] ณิมนาราห์ อยู่คงแก้ว, ปรียานุช เจริญสุข, ปีลดา เชิดชูเกียรติศักดิ์ และธัญนันท์ วรรณธง บรอคเคิลเฮอร์สท์, 2560, มวลชีวภาพและการสะสมแคโรทีนอยด์ในสาหร่ายสีเขียวขนาดเล็กสายพันธุ์ PY202 ภายใต้สภาวะมิกโซโทรฟิก, ว.วิทยาศาสตร์และเทคโนโลยี 25: 591-605.
[10] Simpson, K.L, Chichester, C.O. and Phaff, H.J., 1971, Carotenoid pigments of yeast, In A.H. Rose & J.S. Harrison (Eds.), The yeasts (Vol. 2, pp. 493-515), New York, Academic Press.
[11] Reed, G. and Nagodawithana, T.W., 1991, Yeast Technology. 2nd Ed., An AVI book, New York.
[12] Marova, I., Carnecka, M., Halienova, A., Certik, M., Dvorakova, T. and Haronikova, A., 2012, Use of several waste substrates for carotenoid-rich yeast biomass production, J. Environ. Manage. 95: S338-S342.
[13] Freitas, C., Parreira, T.M., Roseiro, J., Reis, A., de Silva, T.L., 2014, Selecting low-cost carbon sources for carotenoid and lipid production by the pink yeast Rhodosporidium toruloides NCYC 921 using flow cytometry, Bioresour. Technol. 158: 355-359.
[14] Cardoso, L.A.C, Jackel, S., Karp, S.G., Framboisier, X., Chevalot, I. and Marc, I., 2016, Improvement of Sporobolomyces ruberrimus carotenoids production by the use of raw glycerol, Bioresour. Technol. 200: 374-379.
[15] Cheng, Y.T. and Yang, C.F., 2016, Using strain Rhodotorula mucilaginosa to produce carotenoids using food wastes, J. Taiwan Inst. Chem. Eng. 61: 270-275.
[16] Garcia, P.A.H., Bueno, A.L., Martinez, G.D.M, Gama, J.R.B., Perez, F.X.P., Ordaz, R.L., and Garcia, J.A.M., 2015, Effects of feeding yeast (Saccharomyces cerevisiae), organic selenium and chromium mixed on growth performance and carcass traits of hair lambs, J. Integr. Agric. 14: 575-582.
[17] Tripathi, M.K, Karim, S.A., 2011, Effect of yeast cultures supplementation on live weight change, rumen fermentation, ciliate protozoa population, microbial hydrolytic enzymes status and slaughtering performance of growing lamb, Livest. Sci. 135: 17-25.
[18] Durmic, Z., Moate, P.J., Eckard, R., Revell, D.K., Williams, R. and Vercoe, P.E., 2013, In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation, J. Sci. Food Agric. 94: 1191-1196.
[19] Elghadour, M.M.Y., Salem, A.Z.M., Martinez Castaneda, J.S., Camacho, L.M., Kholif, A.E. and Vazquez Chagoyan, J.C., 2015, Direct-fed microbes: A tool for improving the utilization of low-quality roughages in ruminants, J. Integr. Agr. 14: 526-533.
[20] Marrero, Y., Castillo, Y., Burrola, E., Lovaina, T. Rosa, C.A., Ruiz, O., Gonzalez, E. and Basso, L.C., 2011, Morphological, biochemical, and molecular identification of the yeast Levica 25: A potential ruminal microbial additive, Global Veterinaria 7: 60-65.
[21] Chaucheyras, F., Walker, N.D., Bach, A., 2008, Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future, Anim. Feed Sci. Technol. 14: 5-26.
[22] Lee, J.H., Lim, Y.B., Koh, J.H., Baig, S.Y., Shin, H.T., 2002, Screening of thermotolerant yeast for use as microbial feed additive, J. Microbiol. Biotechnol. 12: 162-165.
[23] Kurtzman, C.P., and C.J. Robnett., 1998, Identification and phylogeny of ascomycete yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences, Antonie van Leewen hoek. 73: 331-371.
[24] Latha, B.V. and Jeevaratnam, K., 2010, Purification and characterization of the pigments from Rhodotorula glutinis DFR-PDY isolated from natural source, Glob. J. Biotechnol Biochem. 5: 166-174.
[25] Aksu, Z. and Eren, A.T., 2007, Production of carotenoids by the isolated yeast of Rhodotorula glutinis, Biochem. Eng. J. 35: 107-113.
[26] Tangtua, J., 2014, Evaluation and comparison of microbial cells disruption methods for extraction of pyruvate decarboxylase, IFRJ 21: 1331-1336.
[27] Miller, G.L., 1959, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem. 31: 426.
[28] กุสุมาวดี ฐานเจริญ, 2558, การปรับสภาพฟางข้าวเพื่อผลิตไบโอเอทานอลโดยเชื้อ Kluyvero myces marxianus, ว.วิจัยราชภัฏพระนคร 10(2): 123-133.
[29] Schneider, T., Graeff-Honninger, S., French, W.T., Hernandez, R., Merkt, N., Claupein, W., Hetrick, M. and Pham, P., 2013, Lipid and carotenoid production by oleaginous red yeast Rhodotorula glutinis cultivated on brewery effluents, Energy 61: 34-43.
[30] Yoo, A.Y., Alnaeeli, M., Park, J.K., 2016, Production control and characterization of antibacterial carotenoids from the yeast Rhodotorula mucilaginosa AY-01, Pro. Biochem. 51: 463-473.
[31] Valduga, E., Ribeiro, A.H.R., Cence, K., Colet, R., Tiggemann, L., Zeni, J. and Toniazzo, G., 2014, Carotenoids production from a newly isolated Sporidiobolus pararoseus strain using agroindustrial substrates, Biocatal. Agric. Biotechnol. 3: 207-213.
[32] Hernandez-Almanza, A., Montanez-Saenz, J., Martinez-Avila, C., Rodriguez-Herrera, R. and Aguilar, C.N., 2014, Carotenoid production by Rhodotorula glutinis YB-252 in solid-state fermentation, Food Biosci. 7: 31-36.
[33] Elsanhoty, R.M., Al-Turki, I.A. and Ramadan, M.F., 2012, Screening of medium components by Plackett-Burman design for carotenoid production using date (Phoenix dactylifera) wastes, Ind. Crop. Prod. 36: 313-320.