อิทธิพลของระบบการปลูกพืชเชิงอนุรักษ์ต่อดัชนีคุณภาพคาร์บอนอินทรีย์ในดินบนพื้นที่ลาดชัน
Main Article Content
Abstract
Abstract
Organic carbon quality in soils is a soil fertility index and use for sustainability assessment of cropping systems in sloping areas. This study aimed at investigating effects of conservation cropping systems and soil managements on soil organic carbon (SOC) quality indices on a sloping area in western Thailand by studying on conservation cropping systems in plot scale for three crop cycles. The results showed that the conservation cropping systems could help the soil preserve significantly higher available K and base saturation and affected the soil pH, total N, available P and soil organic matter were significantly decreased with time. On the other hand, conservation cropping systems significantly increased cation exchange capacity and mean weight diameter (MWD) of soil aggregates. Additionally, conservation cropping systems had shown no significant difference on soil organic carbon quality indices except particulate organic carbon. The intercropping with Leacaena hedgerow significantly increased particulate organic carbon content and aggregate mean weight diameter in soil. This implied that intercropping with Leacaena hedgerow can increase particulate organic carbon or organic carbon in soil macroaggregate which can promote stable aggregation in soil. Whereas, the effect of period of time on organic carbon quality indices revealed that total organic carbon in soil was significantly decreased with increasing cropping cycle, except labile SOC pools which tended to increase with increasing period of times of cropping cycle.
Keywords: carbon sequestration; carbon cycle; organic carbon; slope area; conservation cropping systems
Article Details
References
[2] Chan, K.Y., 2001, Soil Organic Carbon and Soil Structure: Implications for the Soil Health of Agrosystems, pp. 126-133, In Lines-Kelly, R. (Ed.), Soil Health, The Foundation of Sustainable Agriculture of a Workshop on the Importance of Soil Health in Agriculture, Wollongbar Agricultural Institute, New South Wales.
[3] Karlen, D.L., Mausbach, M.J., Doran, J.W., Cline, R.T., Harris, R.F. and Schuman, G.E., 1997, Soil quality: A concept definition and framework for evaluation, Soil Sci. Soc. Am. J. 90: 644-650.
[4] Grant, R.F., Juma, N.G., Robertson, J.A., Izaurralde, R.C. and Mcgill, W.B., 2001, Long-term changes in soil carbon under different fertilizer, manure and rotation: Testing the mathematical model ecosystem with data from the Breton plots, Soil Sci. Soc. Am. J. 65: 205-214.
[5] Murty, D., Kirschbaum, M.U.F., McMurtrie, R.E. and McGilvray, A., 2002, Does conversion of forest to agricultural land change soil carbon and nitrogen: A review of the literature, Glob. Change Biol. 8: 105-123.
[6] Baldock, J.A., Oades, J.M., Waters, A.G., Peng, X., Vassallo, A.M. and Wilson, M.A., 1992, Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NNR spectroscopy, Biogeo chemistry 16: 1-42.
[7] Schulten, H.R., Leinweber, P. and Sorge, C., 1993, Composition of organic matter in particle-size fractions of an agricultural soil, Soil Sci. 44: 677-691.
[8] Virto, I., Barré, P. and Chenu, C., 2008, Microaggregation and organic matter storage at the silt-size scale, Geoderma 146: 326-335.
[9] Dormarr, J.F. and Carefoot, J.M., 1996, Implications of crop residue management and conservation tillage on soil organic matter, Can. J. Plant Sci. 76: 627-634.
[10] Martens, D.A., 2000, Plant residue biochemistry regulates soil carbon cycling and carbon sequestration, Soil Biol. Biochem. 32: 361-369.
[11] Reicosky, D.C., Kemper, W.D., Langdale, G.W., Douglas, C.L.Jr. and Rasmussen, P.E., 1995, Soil organic matter changes resulting from tillage and biomass production, J. Soil Water Conserv. 50: 253-261.
[12] Guerra, A., 1994, The effect of organic matter content on soil erosion in simulated rainfall experiments in W. Sussex, UK., Soil Use Manage. 10: 60-64.
[13] Gregorich, E.G., Monreal, C.M., Schnitzer, M. and Schulten, H.R., 1995, Transfor mation of plant residues into soil organic matter: Chemical characterization of plant tissue, isolated soil fractions, and whole soils, Soil Sci. 161: 680-693.
[14] Rhoton, F.E., Shipitalo, M.J., and Lindbo D.L., 2002, Runoff and soil loss from midwestern and southeastern US silt loam soils as affected by tillage practice and soil organic matter content, Soil Tillage Res. 66: 1-11.
[15] Elliott, E.T., 1986, Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils, Soil Sci. Soc. Am. J. 50: 627-633.
[16] Kemper, W.D. and Rosenau, R.C., 1986, Aggregate Stability and Size Distribution, pp. 425-442, In Klute, A. (Ed.), Methods of Soil Analysis, Part I: Physical and Mineralogical Methods, No.9, Agronomy, SSSA, Madison.
[17] Thomas, G.W., 1987, Exchangeable Acidity, pp. 161-163, In Black, C.A. (Ed.), Methods of Soil Analysis, Part II: Chemical and Microbiological Properties, American Society of Agronomy, Inc., Madison.
[18] National Soil Survey Center, 1996, Soil Survey Laboratory Method Manual, Soil Survey Investigation, Report No. 42, Version 3.0, National Resources Conservation Service, Department of Agriculture, USA.
[19] Jackson, M.L., 1965, Soil Chemical Analysis-Advanced Course, Department of Soils, University of Wisconsin, USA.
[20] Bray, R.A. and Kurtz, L.T., 1945, Determination of total organic and available forms of phosphorus in soil, Soil Sci. 59: 39-46.
[21] Watanabe, F.S. and Olsen, S.R., 1965, Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soils, Soil Sci. Soc. Am. Proc. 29: 677-678.
[22] Pratt, P.E., 1965, Potassium, pp. 1023-1031, In Black, C.A. (Ed.), Method of Soil Analysis, Part II: Chemical and Microbiological Properties, Agron. No. 9, American Society of Agronomy, Inc., Madison.
[23] Peech, M., 1945, Determination of exchangeable cation and exchange capacity of soil rapid micromethod utilizing centrifuge and spectrophoto meter, Soil Sci. 59: 25-28.
[24] Walkley, A. and Black, C.A., 1934, An examination of Degtjareff method for determining soil organic matter: A proposed modification of the chromic acid titration method, Soil Sci. 37: 29-35
[25] Nelson, D.W. and Sommers, L.E., 1982, Total carbon, organic carbon and organic matter, pp. 539-579, In Black, C.A. (Ed.), Method of Soil Analysis, Part II: Method of Soil Analysis, Part II: Chemical and Microbiological Properties, Agron. No. 9, American Society of Agronomy, Inc., Madison.
[26] Chapman, H.D., 1965, Cation exchange capacity, pp. 891-901, In Black, C.A. (Ed.), Method of Soil Analysis, Part II: Method of Soil Analysis, Part II: Chemical and Microbiological Properties, Agron. No. 9, American Society of Agronomy, Inc., Madison.
[27] Cambardella, C.A. and Elliott, E.T., 1992, Particulate organic matter across a grassland cultivation sequence, Soil Sci. Soc. Am. J. 56: 777-783.
[28] Ghani, A., Dexter, M. and Perrott, K.W., 2003, Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilisation, grazing and cultivation, Soil Biol. Biochem. 35: 1231-1243.
[29] Blair, G.J., Lefroy, R.D.B and Lisle, L., 1995, Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems, Aust. J. Agric. Res. 46: 1459-1466.
[30] Aumtong, S., Magid, J., Bruun, S. and de Neergaard, A., 2009, Relating soil carbon fractions to land use in sloping uplands in northern Thailand, Agr. Ecosyst. Environ. 131: 229-239.
[31] Rovira, P. and Vallejo, V.R., 2000, Examination of thermal and acid hydrolysis procedures in characterization of soil organic matter, Commun. Soil Sci. Plant Anal. 31: 81-100.
[32] Shirato, Y. and Yokozawa M., 2006, Acid hydrolysis to partition plant material into decomposable and resistant fractions for use in the Rothamsted carbon model, Soil Biol. Biochem. 38: 812-816.
[33] Dahmardeh, M., Ghanbari, A., Syahsar, B.A. and Ramrodi, M., 2010, The role of intercropping maize (Zea mays L.) and Cowpea (Vigna unguiculata L.) on yield and soil chemical properties, Afr. J. Agric. Res. 5: 631-636.
[34] Bahrami, A., Emadodin, I., Ranjbor Atashi, M., Bork, H.R., 2010, Land-use change and soil degradation: A case study, North Iran. Agric. Biol. J. North Am. 1: 600-605.
[35] Peter, P.C., 2008, Assessment of Structural Stability in Nkpologu Sandy Clay Loam Soil, M.Sc. Thesisi, Department of Soil Science, University of Nigeria, Nsukka.
[36] Hernanz, J.L., Lo´pez, R., Navarrete, L. and Sa´nchez-Giro´n, V., 2002, Long-term effects of tillage systems and rotations on soil structural stability and organic carbon stratification in semiarid central Spain, Soil. Till. Res. 66: 129-141.
[37] Oades, J.M., 1984, Soil organic matter and structural stability: Mechanisms and implication for management, Plant Soil. 76: 319-337.
[38] สิริกานดา วัชราไทย, 2551, การศึกษาสมดุลคาร์บอนและการกักเก็บคาร์บอนในดินของสบู่ดำที่ปลูกใน ดินเหนียวและดินร่วนปนทราย, วิทยานิพนธ์ปริญญาโท, มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ.
[39] Cheng, W., Zhang, Q., Coleman, D.C., Carroll, C.R. and Hoffman, C.A., 1996. Is available carbon limiting microbial respiration in the rhizosphere, Soil Biol. Biochem. 28: 1283-1288.
[40] Ashagrie, Y., Zech, W., Guggenberger, G. and Mamo, T., 2007, Soil aggregation and total particulate organic matter following conversion of native forests to continuouse cultivation in Ethiopia, Soil. Till. Res. 94: 101-108.
[41] Franzluebbres, A.J., 2002, Soil organic matter stratification ratio as an indicator of soil quality, Soil. Till. Res. 66: 95-106.
[42] Boyer, J.N. and Groffman, P.M., 1996, Bioavailabilty of water extracable organic carbon fractions in forest and agricultural soil profiles, Soil. Biol. Biochem. 28: 783-790.
[43] Leinweber, P., Schulten, H.R., Kalbitz, K., Meiner, R. and Jancke, H., 2001, Fulvic acid composition in degraded fenlands, J. Plant. Nutr. Soil. Sci. 164: 371-379.
[44] Gregorich, E.G., Beare, M.H., Stoklas, U. and St-George, P., 2003, Biodegradability of soluble organic matter in maize-cropped soil, Geoderma 113: 237-252.
[45] Schnitzer, M. and Khan, S.U., 1972, Humic Substances in the Environment, Marcel Dekker, New York.
[46] Schnitzer, M. and Preston, C.M., 1983, Effects of acid hydrolysis on the 13C NMR spectra of humic substances, Plant Soil. Environ. 75: 201-211.
[47] Rovira, P. and Vallejo, V.R., 2002, Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: An acid hydrolysis approach, Geoderma 107: 109-141.
[48] Preston, C.M. and Schnitzer, M., 1984, Effects of chemical modifications and extractants on the carbon-13 NMR spectra of humic materials, Soil Sci. Soc. Am. J. 48: 305-311.
[49] Paul, E.A., Follet, R.F., Leavitt, S.W., Halvorson, A., Peterson, G.A. and Lyon, D.J., 1997, Radiocarbon dating for determination of soil organic matter pool sizes and dynamics, Soil Sci. Soc. Am. J. 61: 1058-1067.
[50] Rovira, P. and Vallejo, V.R., 2002, Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: An acid hydrolysis approach, Geoderma 107: 109-141.
[51] ศุภธิดา อ่ำทอง, พิทวัส สุสิงสา และกนกกาญจณ์ กันทะวงษ์, 2554, ความสัมพันธ์ระหว่างคาร์บอนที่ถูกออกซิไดซ์ด้วยเพอร์แมงกาเนตและคาร์บอนอินทรีย์ทั้งหมดในดินชนิดต่าง ๆ, ว.วิจัยและส่งเสริมวิชาการเกษตร 28(2): 33-38.
[52] กมล ยศอิ, ศุภธิดา อ่ำทอง และตวงสิต ปัญญา, 2557, ผลการจัดการน้ำและชนิดดินต่อปริมาณคาร์บอนที่ถูกออกซิไดซ์ ด้วยเพอร์แมงกาเนตและคาร์บอนอินทรีย์ทั้งหมดในดินปลูกข้าว, แก่นเกษตร 42(2): 322-330.
[53] Weil, R.R., Islm, K.R., Stine, M.A., Gruver, J.B. and Samson-Liebig, S.E., 2003, Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use, Am. J. Alternative Agric. 18: 3-17.
[54] Berger, C., Schulze, M., Rieke-Zapp, D. and Schlunegger, F., 2010, Rill development and soil erosion: A laboratory study of slope and rainfall intensity, Earth Surf. Proc. Land. 35: 1456-1467.