องค์ประกอบและการประยุกต์ใช้น้ำหมึกจากปลาหมึกบางชนิด

Main Article Content

ชนัญญา พินศรี
จรวย สุขแสงจันทร์
จินตนา สและน้อย
กังสดาลย์ บุญปราบ
Lan Liu

บทคัดย่อ

น้ำหมึกเป็นผลพลอยได้จากการแปรรูปของปลาหมึกที่มาจากการบริโภคหรือจากอุตสาหกรรมทางทะเล และการทิ้งน้ำหมึกสู่สาธารณะมีแนวโน้มก่อให้เกิดมลภาวะต่อสิ่งแวดล้อม งานวิจัยนี้ได้ศึกษาข้อมูลพื้นฐานและการประยุกต์น้ำหมึกจากปลาหมึก 3 ชนิด คือ หมึกหอม (Sepioteuthis lessoniana) หมึกกระดองลายเสือ (Sepia pharaonis) และหมึกสายขาว (Amphioctopus aegina) ผลการศึกษาพบว่าความชื้นในน้ำหมึกหอมมีค่า 87.82±1.66 % หมึกกระดองลายเสือ 85.08±0.70 % และหมึกสายขาว 85.57±0.12 % ค่าความเป็นกรดเป็นด่างของน้ำหมึกของหมึกหอม หมึกกระดองลายเสือ และหมึกสายขาวมีค่า 11, 8 และ 10 ตามลำดับ น้ำหมึกจากหมึกหอมมีปริมาณโปรตีนมากที่สุด (144.15±5.48 mg/mL) ถัดไปเป็นน้ำหมึกจากหมึกกระดองลายเสือ (136.24±0.60 mg/mL) และหมึกสายขาว (104.17±0.68 mg/mL) ซึ่งมีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ (p < 0.05) สารสีของน้ำหมึกเป็นกลุ่มเมลานินมีค่าดูดกลืนแสงสูงสุด (λmax) ที่ความยาวคลื่น 307 nm  สำหรับวุ้นที่มีการใส่น้ำหมึกเป็นองค์ประกอบมีความชื้น 81.87-83.89 % เถ้า 1.52-1.92 % โปรตีน 0.04-0.05 % ไขมัน 0.02 % และคาร์โบไฮเดรต 14.18-16.06 % สีจากวุ้นน้ำหมึกทั้ง 3 ชนิด พบว่าวุ้นหมึกกระดองลายเสือมีค่าความสว่าง ค่าความบริสุทธิ์ ความเป็นสีแดง และความเป็นสีเหลืองมากที่สุด และวุ้นหมึกสายขาวมีค่าโทนสีที่มากที่สุด

Article Details

ประเภทบทความ
Biological Sciences
ประวัติผู้แต่ง

ชนัญญา พินศรี

ภาควิชาวิทยาศาสตร์ทางทะเล คณะประมง มหาวิทยาลัยเกษตรศาสตร์ แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 109000

จรวย สุขแสงจันทร์

ภาควิชาวิทยาศาสตร์ทางทะเล คณะประมง มหาวิทยาลัยเกษตรศาสตร์ แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 109000

จินตนา สและน้อย

ภาควิชาวิทยาศาสตร์ทางทะเล คณะประมง มหาวิทยาลัยเกษตรศาสตร์ แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 109000

กังสดาลย์ บุญปราบ

ภาควิชาผลิตภัณฑ์ประมง คณะประมง มหาวิทยาลัยเกษตรศาสตร์ แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900

Lan Liu

School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006

เอกสารอ้างอิง

Castillo, M.G., Salazar, K.A. and Joffe, N.R., 2015, The immune response of cephalopods from head to foot, Fish Shellfish Immunol. 46: 145-160.

Lee, P.N., Callaerts, P., de Couet, H.G. and Martindale, M.Q., 2003, Cephalopod hox genes and the origin of morphological novelties, Nature 424: 1061-1065.

Boyle, P. and Rodhouse, P., 2005, Cephalopods: Ecology and Fisheries, Blackwell Science, Oxford, 464 p.

Derby, C.D., 2014, Cephalopod ink: Production, chemistry, functions and applications, Marine Drugs 12: 2700-2730.

Suksangchan, C., 2015, Cephalopods, Department of Marine Science faculty of Fisheries, Kasetsart University, Bangkok, 130 p. (in Thai)

Myers, D., Is Squid ink the Next Big Health Food Trend, Available Source: https://www.thedailymeal.com/eat/squid-ink-next-big-health-food-trend, January 20, 2019.

Nair, J.R., Pillai, D., Joseph, S.M., Gomathi, P., Senan, P.V. and Sherief, P.M., 2011, Cephalopod research and bioactive substances, Indian J. Geo-Marine Sci. 40: 13-27.

Sasaki, J., Ishita, K., Takaya, Y., Uchisawa, H. and Matsue, H., 1997, Anti-tumor activity of squid ink, J. Nutr. Sci. Vitaminlo. 43: 455-461.

Rajaganapathi, J., Thyagarajan, S.P., Patterson Edward J.K., 2000, Study on cephalopod’s ink for anti-retroviral activity, Indian J. Exp. Biol. 38: 519-520.

Mimura, T., Maeda, K., Hariyama, H., Aonuma, S., Satake, M. and Fujita T., 1982, Studies on biological activities of melanin from marine animals, I. Purification of melanin from Ommastrephes bartrami Lesuel and its inhibitory activity on gastric secretion in rats, Chem. Pharm. Bull. 30: 1381-1386.

Lei, M., Wang, J., Wang, Y., Pang, L., Wang, Y., Xu, W. and Xue, C., 2007, Study of the radio-protective effect of cuttlefish ink on hemopoietic injury, Asia Pac. J. Clin. Nutr. 16: 239-243

Kim, S.Y., Kim, S.H. and Song, K.B., 2003, Characterization of an partial purification and angiotensin-converting enzyme inhibitor from squid ink, Agric. Chem. Biotechnol. 46: 122-123.

AOAC, 2000, Official Methods of Analysis, 15th Ed., Association of Official Analytical Chemists, Inc., Washington D.C., 1298 p.

Bradford, M.B., 1976, A rapid and sensitive method for quantitation of micrograms quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 7: 248-254.

Guo, J., Rao, Z., Yang, T., Man, Z., Xu, M., and Zhang, X., 2014, High-level production of melanin by a novel isolate of Streptomyces kathirae, FEMS Microbiol. Lett. 357: 85-91.

Tangthongchit, T., 2012, How To Make Jelly, Phetpraguy, Inc., Bangkok, 120 p. (in Thai)

Somseang, S., 2007, Comparison of Color Change of Lychee [Lichi chinensis Sonn. (cv. Guang Jao)] Preserved by Ultra High Pressure and Heat Treatments, Master Thesis, Chiang Mai University, Chiang Mai, 108 p. (in Thai)

Brita, N.A., 2016, Antioxidant and antibacterial properties of cuttlefish ink collected from selected cuttlefish landed at Thoothukudi coast, Master Thesis, Tamil Nadu Fisheries University, Nagapattinam, 85 p.

Kollias, N., 1995, The Spectroscopy of Human Melanin Pigmentation, pp. 31-38, In Zeise, L., Chedekel, M.R., Fitzpatrick, T.B. (Eds.), Melanin: Its Role in Human Photoprotection, Valdenmar Publishing Co., Overland Park.

El-Naggar, N. and El-Ewasy, S., 2017, Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H, Sci. Rep. 7: 1-19.

Mbonyiryivuze, A., Omollo, I., Balla, D.I., Mwakikunga, B., Simon, M.D., Park, E. and Maaza, M., 2015, Natural Dye Sensitizer for Grätzel Cells: Sepia Melanin, Physics and Materials Chemistry, 3: 1-6.

Takaya, Y., Uchisawa, H., Matsue, H., Okuzaki, B., Narumi, F., Sasaki, J. and Ishida, K., 1994, An investigation of the antitumor peptidoglycan fraction from squid ink, Biol. Pharm. Bull. 17: 846-919.

Zaharah, F. and Salleh, R.M., 2017, Antioxidant and antimicrobial activities of squid ink powder, Food Res. 2: 82-88.

Palumbo, A., D’Ischia, M., Misuraca, G., and Prota, G., 1987, Effect of metal ions on the rearrangement of dopachrome, Biochim. Biophys. Acta 925: 203-209.