อนุภาคนาโนแมกนีไทต์เคลือบด้วยอะกาโรส : การเตรียมและการประยุกต์ใช้สำหรับการดูดซับโคบอลต์(II)

Main Article Content

เพชรลดา สัญชยานุกูล
สุดารัตน์ พรเพชรไพบูรณ์
ศศิธร มั่นเจริญ

Abstract

Abstract


The study of synthetic optimal conditions for agarose coated magnetite nanoparticles was presented in this work. The magnetite nanoparticles were prepared by using co-precipitation method of Fe(II)/Fe(III). The factors that affected on coating of agarose including agarose and sodium hydroxide concentrations and reaction times were investigated. The prepared particles were characterized by Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM) techniques. Moreover, the conditions for cobalt(II) adsorption using these particles for instant pH of the cobalt(II) solution and adsorption time including elution and adsorption isotherms were studied. The cobalt(II) analysis was determined by using visible spectrophotometry based on colored complex-formation of cobalt(II) and DTZ (dithizone) at lmax 570 nm. It was observed that the adsorption efficiency and percentages of desorption of the synthetic magnetic nanoparticles were 2.93 mg/l and 91 %, respectively. 


Keywords: magnetic nanoparticle; agarose; cobalt(II); spectrophotometry; co-precipitation method

Downloads

Download data is not yet available.

Article Details

Section
วิทยาศาสตร์กายภาพ
Author Biographies

เพชรลดา สัญชยานุกูล

ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยบูรพา ตำบลแสนสุข อำเภอเมือง จังหวัดชลบุรี 20131

สุดารัตน์ พรเพชรไพบูรณ์

ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยบูรพา ตำบลแสนสุข อำเภอเมือง จังหวัดชลบุรี 20131

ศศิธร มั่นเจริญ

ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยบูรพา ตำบลแสนสุข อำเภอเมือง จังหวัดชลบุรี 20131

References

[1] Amiri, S., Mehrnia, M.R. and Roudsari, F.P., 2017, Enhancing purification efficiency of affinity functionalized composite agarose micro beads using Fe3O4 nanoparticles, J. Chromatogr. B. 1041: 27-36.
[2] Luo, F., Chen, Z., Megharaj, M. and Naidu, R., 2016, Simultaneous removal of trichloroethylene and hexavalent chromium by green synthesized agarose-Fe nanoparticles hydrogel, Chem. Eng. J. 294: 290-297.
[3] Tahmasebi, E., Yamini, Y., Moradi, M. and Esrafili, A., 2013, Polythiophene-coated Fe3O4 superparamagnetic nanocomposite: Synthesis and application as a new sorbent for solid-phase extraction, Anal. Chim. Acta. 770: 68-74.
[4] Gao, Y., Wang, G., Huang, H., Hu, J., Shah, S.M. and Su, X., 2011, Fluorometric method for the determination of hydrogen peroxide and glucose with Fe3O4 as catalyst, Talanta 85: 1075-1080.
[5] Zhang, X., Cai, W., Hao, L., Feng, S., Lin, Q. and Jiang, W., 2017, Preparation of Fe3O4/reduced graphene oxide nanocomposites with good dispersibility for delivery of paclitaxel, J. Nanomater. 2017: 10.
[6] Song, X., Luo, X., Zhang, Q., Zhu A., Ji, L. and Yan, C., 2015, Preparation and characterization of biofunctionalized chitosan/Fe3O4 magnetic nanoparticles for application in liver magnetic resonance imaging, J. Magnetism Magnetic Mater. 388: 116-122.
[7] Zhu, H., Tao, J., Wang, W., Zhou, Z., Li, P., Li, Z., Yan, K., Wu, S., Yeung, K.W.K., Xu, Z., Xu, H. and Chu, P.K., 2013, Magnetic, fluorescent, and thermos-responsive Fe3O4/rare earth incorporated poly
(St-NIPAM) core shell colloidal nano particles in multimodal optical/magnetic resonance imaging probes, Biomaterials 34: 2296-2306.
[8] Lin, Z., Zhang, Z., Li, Y. and Deng, Y., 2016, Magnetic nano-Fe3O4 stabilized Pickering emulsion liquid membrane for selective extraction and separation, Chem. Eng. J. 288: 205-311.
[9] Zhang, X. and Wang, J., 2018, Preparation of carbon coated Fe3O4 nanoparticles for magnetic separation of uranium, Solid State Sci. 75: 14-20.
[10] Singha, K.K., Senapatib, K.K. and Sarma, K.C., 2017, Synthesis of superpara magnetic Fe3O4 nanoparticles coated with green tea polyphenols and their use for removal of dye pollutant from aqueous, J. Environ. Chem. Eng. 5: 2214-2221.
[11] Liang, H., Niu, H., Li, P., Tao, Z., Mao, C., Song, J. and Zhang, S., 2013, Multifunctional Fe3O4@C@Ag hybrid nano particles: Aqueous solution preparation, characterization and photocatalytic activity, Mater. Res. Bull. 48: 2415-2419.
[12] Chai, L., Wang, Y., Zhao, N., Yang, W. and You, X., 2013, Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water, Water Res. 47: 4040-4049.
[13] Saini, J., Garg, V.K. and Gupta, R.K., 2018, Removal of Methylene Blue from aqueous solution by Fe3O4@Ag/SiO2 nanospheres: Synthesis, characterization and adsorption performance, J. Mol. Liquids 250: 413-422.
[14] Singhal, P., Jha, S.K. Pandey, S.P. and Neogy, S., 2017, Rapid extraction of uranium from sea water using Fe3O4 and humic acid coated Fe3O4 nanoparticles, J. Hazard. Mater. 335: 152-161.
[15] Qin, W., Li, J., Tu, J., Yang, H., Chen, Q. and Liu, H., 2017, Fabrication of porous chitosan membranes composed of nanofibers by low temperature thermally induced phase separation, and their adsorption behavior for Cu2+, Carbohydr. Polym. 178: 338-346.
[16] Hui, B., Zhang, Y. and Ye, L., 2015, Structure of PVA/gelatin hydrogel beads and adsorption mechanism for advanced Pb(II) removal, J. Indust. Eng. Chem. 21: 868-876.
[17] Jiang, Y., Liu, B., Xu, J., Pan, K., Hou, H., Hu, J. and Yang, J., 2018, Cross-linked chitosan/β-cyclodextrin composite for selective removal of methyl orange: Adsorption performance and mechanism, Carbohydr. Polym. 182: 106-114.
[18] Salih, S.S. and Ghosh, T.K., 2018, Adsorption of Zn(II) ions by chitosan coated diatomaceous earth, Int. J. Biol. Macromol. 106: 602-610.
[19] Pal, P., Syed, S.S. and Banat, F., 2017, Gelatin-bentonite composite as reusable adsorbent for the removal of lead from aqueous solutions: Kinetic and equilibrium studies, J. Water Proc. Eng. 20: 40-50.
[20] Hayeeye, F., Sattar, M., Chinpa, W. and Sirichote, O., 2017, Kinetics and thermodynamics of rhodamine B adsorption by gelatin/activated carbon composite beads, Colloids Surf. A Physicochem. Eng. Asp. 513: 259-266.
[21] Tripathi, A., Savio, J., Stanislaus, M. and D'Souza, F., 2013, Uranium(VI) recovery from aqueous medium using novel floating macroporous alginate-agarose-magnetite cryobeads, J. Hazard. Mater. 246-247: 87-95.
[22] Edenborn, H.M., Howard, B.H., Sams, J.I., Vesper, D.J. and Edenborn, S.L., 2017, Passive detection of Pb in water using rock phosphate agarose beads, J. Hazard. Mater. 336: 240-248.
[23] Abolghasemi, M. and Mir, P.H., 2006, Preparation of a novel optical sensor for low pH values using agarose membranes as support, Sens. Actuator B Chem. 115: 49-53.
[24] Poursheikhi, N., Hashemi, P., Safdarian, M., Serenjeh, F.N. and Hesami, H., 2016, Agarose based magnetic solid-phase extraction-magnetic field agitation for determination of trace amounts of molybdenum in beans, J. Braz. Chem. Soc. 27: 1678-4790.
[25] Hashemi, P., Boroumand, J. and Reza Fat’hi, M., 2004, A dual column system using agarose-based adsorbents for pre concentration and speciation of chromium in water, Talanta 64: 578-583.
[26] Berger, P., Adelman, N.B., Beckman, K.J., Campbell, D.J., Ellis, A.B. and Lisensky, G.C., 1999, Preparation and properties of an aqueous ferrofluid, J. Chem. Edu. 76: 943-948.
[27] ชลธิชา ทองธรรมชาติ, 2557, การกำจัดโครเมียม(VI)ในน้ำทิ้งห้องปฏิบัติการด้วยอนุภาคนาโนแมกนีไทต์เคลือบด้วยอะกาโรสพอลิเมอร์, ภาคนิพนธ์ปริญญาโท, คณะวิทยาศาสตร์ มหาวิทยาลัยบูรพา, ชลบุรี, 39 น.
[28] Safdarian, M., Hashemi, P. and Adeli, M., 2013, One-step synthesis of agarose coated magnetic nanoparticles and their application in the solid phase extraction of Pd(II) using a new magnetic field agitation device, Anal. Chim. Acta. 774: 44-50.
[29] Pornpetpaiboon, S., Lobthaisong, A. and Muncharoen, S., 2016, Development of a cobalt(II) analysis method in laboratory wastewaters using UV-Vis spectrophotometry, p. 259-267, Proceeding of the 5th Burapha University International Conference, Chonburi.
[30] Mohammadi, A. and Barikani, M., 2014, Synthesis and characterization of superparamagnetic Fe3O4 nanoparticles coated with thiodiglycol, Mater. Character. 90: 88-93.
[31] Li, J., Guo, Z., Zhang, S. and Wang, X., 2011, Enrich and seal radionuclides in magnetic agarose microspheres, Chem. Eng. J. 172: 892-897.
[32] Hu, Z., Hong, P., Liao, M., Kong, S., Huang, N., Ou, C. and Li, S., 2016, Preparation and characterization of chitosan-agarose composite films, Materials 9: 816-825.
[33] Yu, S., Zhai, L., Qiu, Y., Cheng, L. and Ren, X., 2016, Synthesis and structural characterization of magnetite/sepiolite composite and its sorptive properties for Co(II) and Cd(II), J. Taiwan Inst. Chem. Eng. 59: 221-228.
[34] Wang, Q., Li, J., Chen, C., Ren, X., Hu, J. and Wang, X., 2011, Removal of cobalt from aqueous solution by magnetic multiwalled carbon nanotube/iron oxide composites, Chem. Eng. J. 174: 126-133.
[35] Liu, B., Ge, N., Peng, B. and Pan, S., 2018, Kinetic and isotherm studies on the adsorption of tenuazonic acid from fruit juice using inactivated LAB, Journal of Food Engineering. 224: 45-52.
[36] Tripathi, A., Melo, J.S. and D’Souza, S.F., 2013, Uranium(VI) recovery from aqueous medium using novel floating macroporous alginate-agarose-magnetite cryobeads, J. Hazard. Mater. 246-247: 87-95.
[37] Petrucci, R.P., Herring, F.G., Madura, J.D. and Bissonnette, C., 2011, General Chemistry: Principles and Modern Apllications, 10th Ed., Person Canada, Inc., Toronto.