Simulation of Low-carbon Power Generation with Reversible Solid Oxide Fuel Cell (RSOFC) System

Main Article Content

ฐิติมาภรณ์ คำภีระ
อภิชญา เกษสุวรรณ
วรณี มังคละศิริ
จิตติ มังคละศิริ


This research studies the generation of electricity from tri-reforming with the SOFC system by using wastewater from sugar industry as feedstock. However, this system releases carbon dioxide (CO2), which is the main cause of global warming. Thus, this study aims to reduce CO2 by using the reversible solid oxide fuel cell (RSOFC). The RSOFC system includes four main processes: tri-reforming, SOFC, solid oxide electrolyser cell (SOEC) and methanation. The RSOFC system was performed by using Aspen Plus v.9.0. The objective was to study the optimal operating conditions of each process in order to generate the maximum electricity with a minimum of CO2 emission. The results of the RSOFC system showed that the electrical power density was 6489.56 W/m2, which similarly when compared with tri-reforming with the SOFC system. Moreover, CO2 released from tri-reforming with the SOFC system was 1602.84 kg/hr, while the RSOFC system released 1206.11 kg/hr of CO2. Thus, the RSOFC system potentially reduced CO2 emission by 24.75 %. However, high electric power was needed in the SOEC process. Thus, the process should be carefully considered in energy efficiency aspect.


Download data is not yet available.

Article Details

Author Biographies

ฐิติมาภรณ์ คำภีระ

ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

อภิชญา เกษสุวรรณ

ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

วรณี มังคละศิริ

ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

จิตติ มังคละศิริ

ศูนย์เทคโนโลยีโลหะและวัสดุแห่งชาติ อุทยานวิทยาศาสตร์แห่งประเทศไทย ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120


[1] The Federation of Thai Industries, 2017, Industrial Economic Report in 2017 and Trends in 2018, Available Source: https://,
October 24, 2018. (in Thai)
[2] Wongkitikriwan, M., 2018, Thai Economic Trends in 2018, Bright, Export and Investment, Available Source: https://, October 24, 2018. (in Thai)
[3] Energy Policy and Planning Office, Ministry of Energy, 2016, Thai Energy Overview in 2007-2020, Available Source: http://www. tion/analyte/forecast-long-term, October
25, 2018. (in Thai)
[4] Sukanjana, L. and Sombat, T., 2013, Fuel cell, EAU Herit. J. Sci. Technol. 7(1): 1-10. (in Thai)
[5] Amornchai, A. and Suttichai, A., 2011, Performance Analysis and Improvement of Solid Oxide Fuel Cells Integrated with Hydrogen Production Process, Research Report, Thailand Research Fund, Bangkok, 168 p. (in Thai)
[6] Yaneeporn, P., 2012, Performance Analysis of Proton-based Solid Oxide Fuel Cells with Internal Autothermal Reforming, National Research Council of Thailand, Digital Research Information Center, 43 p. (in Thai)
[7] Nattawut, W. and Amornchai, A., 2014, Electrolysis for hydrogen production, Technol. Promot. Innomag Magazine 237: 45-48. (in Thai)
[8] Maximilian, H., Herrmann, S. and Spliethoff, H., 2017, Simulation of a reversible SOFC with Aspen Plus, Int. J. Hydrogen Energy 42: 10329-10340.
[9] Yang, C., Shu, C., Miao, H., Wang, Z., Wu, Y., Wang, J., Zhao, J., Wang, F., Ye, W. and Yuan, J., 2019, Dynamic modelling and performance analysis of reversible solid oxide fuel cell with syngas, Int. J. Hydrogen Energy 44: 6192-6211.
[10] Mottaghizadeh, P., Santhanam, S., Heddrich, M.P., Friedrich, K.A. and Rinaldi, F., 2017, Process modeling of a reversible solid oxide cell (r-SOC) energy storage system utilizing commercially available SOC reactor, Energy Convers. Manag. 142: 477-493.
[11] Song, C., 2001, Tri-reforming: A new process for reducing CO2 emissions, Chem. Innovation 31: 21-26.
[12] Nakhon Ping Energy Research and Development Institute, 2015, Hydrogen Energy: Alternative energy to replace oil, Available Source: http://www.erdi.cmu. gory=11, March 20, 2019.
[13] Wendel, C.H., Kazempoor, P. and Braun, R.J., 2015, Novel electrical energy storage system based on reversible solid oxide cell: System design and operating conditions, J. Power Sour. 276: 133-134.
[14] Stempien, J.P., Sun, Q. and Chan, S.H., 2013, Solid oxide electrolyzer cell modeling: A review, J. Power Technol. 93: 216-246.
[15] Singer D.V., 2017, Reversible Solid Oxide Cells for Bidirectional Energy Conversion in Spot Electricity and Fuel Markets, Columbia University, New York, 265 p.
[16] Santi, K. and Chanoknan, S., 2015, Parametric study of process variation in biogas production at Mitr Phol (Phu Vieng), pp. 19-25, 2nd National Conference on Farm Engineering and Automatic Control Technology, Khon Kaen University, Khon Kaen. (in Thai)
[17] Redissi, Y., Er-rbib, H. and Bouallou, C., 2013, Storage and restoring the electricity of renewable energies by coupling with natural gas grid, pp. 430-435, International Renewable and Sustainable Energy Conference (IRSEC), Institute of Electrical and Electronics Engineers, Ouarzazate.
[18] Zhang, Y., Zhang, S., Gossage, J.L., Lou, H.H. and Benson, T.J., 2014, Thermodyna mic analyses of stri-reforming reaction to produce syngas, Energy Fuels 28: 2717-2726.
[19] Narissara, C., Dang, S., Suthida, A., Amornchai, A. and Yaneeporn, P., 2017, Performance and environmental study of a biogas-fuelled solid oxide fuel cell with different reforming approach, Energy 146: 131-140.
[20] Cozzolino, R., Lombardi, L. and Tribioli, L., 2017, Use of biogas from biowaste in a solid oxide fuel cell stack: Application to an off-grid power plant, Renew. Energy 111: 781-791.
[21] Redissi, Y. and Bouallou, C., 2013, Valorization of carbon dioxide by co-electrolysis of CO2/H2O at high temperature for syngas production, Energy Procedia 37: 6667-6678.
[22] Ni, M., 2012, An electrochemical model for syngas production by co-electrolysis of H2O and CO2, J. Power Sour. 202: 209-216.
[23] Aicart, J., 2014, Modeling and Experimental Validation of Steam and Carbon Dioxide Co-electrolysis at High Temperature, University of Grenoble, Grenoble, 205 p.
[24] Er-rbib, H. and Bouallou, C., 2014, Modeling and simulation of CO methanation process for renewable electricity storage, Energy 75: 81-88.
[25] Davis, W. and Martín, M., 2014, Optimal year-round operation for methane production from CO2 and Water using wind and/or Solar energy, J. Cleaner Prod. 80: 252-261.