Effect of Dielectric Barrier Discharge Plasma on Growth and Secondary Metabolite Contents of Lettuce Sprout

Main Article Content

ภาณุมาศ ฤทธิไชย
เยาวพา จิระเกียรติกุล
มณีรัตน์ สิงหวิบูลย์
นพพร พูลยรัตน์


Growth and secondary metabolite contents in lettuce sprouts were investigated. Seeds of ‘Sweet Green’ and ‘Seafresh’ were treated to DBD plasma for 0, 60 and 240 s. Results indicated that the responses of growth and secondary metabolite accumulation in lettuce sprouts to DBD plasma differed depending on lettuce cultivars and DBD plasma exposure times. The 60 and 240 s DBD plasma treated seeds improved growth of ‘Sweet Green’ sprouts as dry weight increased 18.28 and 30.11 %, respectively, comparing to non-plasma treatment. However, growth of ‘Seafresh’ sprouts was not significantly different regardless of plasma treatments. Total phenolic contents of ‘Sweet Green’ sprouts grown from seeds exposed to 240 s DBD plasma enhanced by 25 % as compared with control, while those of ‘Seafresh’ sprouts were not statistically different among the treatments. Flavonoid contents of lettuce sprouts developed from seeds treated to 240 s DBD plasma was 8.32 % higher than that of the control. The greater DPPH scavenging capacities of lettuce sprouts occurred in DBD plasma treatments. The results obtained from this research indicated that DBD plasma was one of effective methods to enhance growth and secondary metabolite contents in lettuce sprout.


Download data is not yet available.

Article Details

Author Biographies

ภาณุมาศ ฤทธิไชย

สาขาวิชาเทคโนโลยีการเกษตร คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

เยาวพา จิระเกียรติกุล

สาขาวิชาเทคโนโลยีการเกษตร คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

มณีรัตน์ สิงหวิบูลย์

สาขาวิชาเทคโนโลยีการเกษตร คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

นพพร พูลยรัตน์

ศูนย์ความเป็นเลิศเทคโนโลยีนิวเคลียร์ชั้นสูง สถาบันเทคโนโลยีนิวเคลียร์แห่งชาติ (องค์การมหาชน) ตำบลทรายมูล อำเภอองครักษ์ จังหวัดนครนายก 26120


[1] Chirokov, A., Gutsol, A. and Fridman A., 2005, Atmospheric pressure plasma of dielectric barrier discharges, Pure Appl. Chem. 77: 487-495.
[2] Moreau, M., Orange, N. and Feuilloley, M. G.J., 2008, Non-thermal plasma techno logy: New tools for biodecontamination, Biotechnol. Adv. 26: 610-617.
[3] Butscher, D., Loon, H.V., Waskov, A., von Rohr, P.R., and Schuppler, M., 2016, Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge, Int. J. Food Microbiol. 238: 222-232.
[4] Štěpánová, V., Slavíček, P., Kelar, J., Prášil, J., Smékal, M., Stupavská, M., Jurmanová, J. and Černák, M., 2018, Atmospheric pressure plasma treatment of agricultural seeds of cucumber (Cucumis sativus L.) and pepper (Capsicum annuum L.) with effect on reduction of diseases and germination improvement, Plasma Process Polym. 15: e1700076.
[5] Ling, L., Jiafeng, J., Jiangang, L., Minchong, S., Xin, H., Hanliang, S. and Yuanhua, D., 2014, Effects of cold plasma treatment on seed germination and seedling growth of soybean, Sci. Rep. 4: 5859.
[6] Ji, S.H., Choi, K.H., Pengkit, A., Im, J.S., Kim, J.S., Kim, Y.H., Park, Y., Hong, E.J., Jung, S.K., Choi, E.H. and Park, G., 2016, Effects of high voltage nanosecond pulsed plasma and micro DBD plasma on seed germination growth development and physiological activities in spinach, Arch. Biochem. Biophys. 605: 117-128.
[7] Singhawiboon, M., Rithichai, P., Jirakaitti kul, Y. and Poolyarat, N., 2018, Effect of dielectric barrier discharge plasma on germination and vigor of lettuce (Lactuca sativa) seed, Thai Sci. Technol. J. 26(5): 815-822. (in Thai)
[8] Iranbakhsh, A., Oraghi Ardebili, Z., Oraghi Ardebili, N., Ghoranneviss, M. and Safari, N., 2018, Cold plasma relieved toxicity signs of nano zinc oxide in Capsicum annuum cayenne via modifying growth, differentiation, and physiology, Acta Physio. Plant. 40: 154.
[9] Dobrin, D., Magureanu M., Mandache, N. B. and Ionita, M.D., 2015, The effect of non-thermal plasma treatment on wheat germination and early growth, Innov. Food Sci. Emerg. 29: 255-260.
[10] Kitazaki, S., Sarinont, T., Kago, K., Hayashi, N. and Shiratani, M., 2014, Plasma induced long-term growth enhancement of Raphanus sativus L. using combinatorial atmospheric air dielectric barrier discharge, Curr. Appl. Phys. 14: 149-153.
[11] Jiafeng, J., Xin, H., Ling, I., Jiangang, L., Hanliang, S., Qilai, X., Renhong, Y. and Yuanhua, D., 2014, Effect of cold plasma treatment on seed germination and growth of wheat, Plasma Sci. Technol. 16: 54-58.
[12] Worawattananutai, P., Itharat, A. and Ruangnoo, S., 2014, In vitro antioxidant, anti-inflammatory, cytotoxic activities against prostate cancer of extracts from Hibiscus sabdariffa leaves, J. Med. Assoc. Thai. 97: 81-87.
[13] Folin, O. and Ciocalteu, V., 1927, On tyrosine and tryptophane determinations in proteins, J. Biol. Chem. 73: 627-650.
[14] Zhu, H., Wang, Y., Liu, Y., Xia, Y. and Tang, T., 2010, Analysis of flavonoids in Portulaca oleracea L. by UV-Vis spectro photometry with comparative study on different extraction technologies, Food Anal. Methods 3: 90-97.
[15] Yamasaki, K., Hashimoto, A., Kokusenya, Y., Miyamoto, T. and Sato, T., 1994, Electrochemical method for estimating the antioxidative effect of methanol feeding, Enzyme Microb. Tech. 36: 133-138.
[16] Šerá, B., Špatenka, P., Šerý, M., Vrchotová, N. and Hrušková, I., 2010, Influence of plasma treatment on wheat and oat germination and early growth, IEEE Trans. Plasma Sci. 38: 2963-2968.
[17] Bußler, S., Herppich, W.B., Neugart, S., Schreiner, M., Ehlbeck, J., Rohn, S. and Schlüter, O., 2015, Impact of cold atmospheric pressure plasma on physiology and flavonol glycoside profile of peas (Pisum sativum ‘Salamanca’), Food Res. Int. 76: 132-141.
[18] Mihai, A.L., Dobrin, D., Măgureanu, M. and Popa, M.E., 2014, Positive effect of non-thermal plasma treatment on radish seeds, Rom. Rep. Phys. 66: 1110-1117.
[19] Matra, K., 2016, Non-thermal plasma for germination enhancement of radish seeds,
Procedia Comput. Sci. 86: 132-135.
[20] da Silva, A.R.M., Fariasa, M.L., da Silva, D.L.S., Vitorianoa, J.O., de Sousab, R.C. and Alves, C.Jr., 2017, Using atmospheric plasma to increase wettability, imbibition and germination of physically dormant seeds of Mimosa caesalpiniafolia, Colloids Surf. B 157: 280-285.
[21] Filatova, I., Azharonok, V., Lushkevich, V., Zhukovsky, A., Gadzhieva, G., Spasić, K., Živković, S., Puač, N., Lazović, S., Malović, G. and Petrović, Z.L., 2013, Plasma seeds treatment as a promising technique for seed germination Improvement, 31st ICPIG, Granada.
[22] Šerá, B., Gajdová, I., Černák, M., Gavril, B., Hnatiuc, E., Kováčik, D., Kříha, V., Sláma, J., Šerý, M. and Špatenka, P., 2012, How various plasma sources may affect seed germination and growth, IEEE Trans. Plasma Sci. 40: 1365-1370.
[23] Iranbakhsh, I., Ghoranneviss, M., Oraghi Ardebili, Z., Oraghi Ardebili, N., Hesami Tackallou, S. and Nikmaram, H., 2017, Non-thermal plasma modified growth and physiology in Triticum aestivum via generated signaling molecules and UV radiation, Biol. Plantarum 61: 702-708.
[24] Rice-Evans, C.A. and Miller, N.J., 1996, Antioxidant activities of flavonoids as bioactive components of food, Biochem. Soc. Trans. 24: 790-795.
[25] Barreca, D., Bellocco, E., Caristi, C., Leuzzi, U. and Gattuso, G., 2011, Distribution of C- and O-glycosyl flavonoids, (3-hydroxy-3-methylglutaryl) glycosyl flavanones and furocoumarins in Citrus aurantium L. juice, Food Chem. 124: 576-582.
[26] Rodglin, C., Srisook, E. and Srisook, K., 2017, Effects of extraction conditions on total phenolic content, total flavonoid content and antioxidant activities of different parts of Citrus aurantium L., Burapha Sci. J. 22(1): 211-225. (in Thai)
[27] Rithichai, P., Khemwichai, P. Jirakiattikul, Y. and Youngvises, N., 2015, Flower development and antioxidant capacity in moonflower (Ipomoea alba L.), Thai Sci. Technol. J. 23(3): 497-506. (in Thai)