In vivo Study of Cadmium and Lead Accumulations in the Root, Stem and Leaf of Riceberry (Oryza sativa L.)

Main Article Content

ฉัตรพงษ์ คำเลิศ
ลำใย ณีรัตนพันธุ์
อุไรวรรณ ภูนาพลอย
พรภิไล ถนอมสงัด

Abstract

The objective of this research was to study the contamination of cadmium and lead in soil, and their accumulations in root, stem and leaf of Riceberry (Oryza sativa L.) after 3 months experiment at different concentrations of cadmium (0, 40, 50 and 60 mg/L) and lead (0, 400, 500 and 600 mg/L). Cadmium and lead concentrations were measured by inductively coupled plasma optical emission spectrometry (ICP-OES). The results showed that cadmium and lead concentrations in soil after the experiment were within Thailand’s soil quality standard. Cadmium accumulations in root of the control (0 mg/L) and the experimental groups (40, 50 and 60 mg/L) were 3.54±3.03, 20.90±0.70, 37.06±0.86, and 45.73±0.45 mg/kg, respectively, whereas those in stem and leaf were 1.04±0.47, 7.88±0.47, 8.70±0.36 and 9.14±0.06, and 0.25±0.09, 1.32±0.41, 1.70±0.13, and 1.15±0.02 mg/kg, respectively. The control and the experimental groups were found that cadmium concentrations in root > stem > leaf. Lead accumulations in root of the control (0 mg/L) and the experimental groups (400, 500 and 600 mg/L) were 18.90±0.24, 233.77±0.84, 267.95±0.27, and 286.03±1.33 mg/kg, respectively, whereas those in stem and leaf were 29±0.60, 5.07±0.36, 5.29±0.56 and 5.58±0.40, and 7.84±1.21, 12.80±0.35, 9.71±0.16, and 12.18±0.19 mg/kg, respectively. The control and the experimental groups were found that lead concentration in root > leaf > stem. When comparing cadmium and lead concentrations with standard values, both concentrations in all parts of Riceberry exceeded the standards (0.5 and 0.3 mg/kg), except cadmium concentrations in leaf of the control group. The results of this study suggested that Riceberry cultivation in contaminated areas can accumulate cadmium and lead in each part of rice, depending on types of heavy metals. Riceberry cultivation should be avoided planting in polluted area.

Downloads

Download data is not yet available.

Article Details

Section
วิทยาศาสตร์ชีวภาพ
Author Biographies

ฉัตรพงษ์ คำเลิศ

สาขาวิชาวิทยาศาสตร์สิ่งแวดล้อม คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น ตำบลในเมือง อำเภอเมืองขอนแก่น จังหวัดขอนแก่น 40002

ลำใย ณีรัตนพันธุ์

สาขาวิชาวิทยาศาสตร์สิ่งแวดล้อม คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น ตำบลในเมือง อำเภอเมืองขอนแก่น จังหวัดขอนแก่น 40002

อุไรวรรณ ภูนาพลอย

สาขาวิชาวิทยาศาสตร์สิ่งแวดล้อม คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น ตำบลในเมือง อำเภอเมืองขอนแก่น จังหวัดขอนแก่น 40002

พรภิไล ถนอมสงัด

สาขาวิชาอาชีวอนามัยและความปลอดภัย คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏนครปฐม ถนนมาลัยแมน อำเภอเมืองนครปฐม จังหวัดนครปฐม 73000

References

[1] Office of Agricultural Economics, 2018, Agricultural Statistics of Thailand 2017, Ministry of Agriculture and Cooperatives Thailand, Bangkok, 197 p. (in Thai)
[2] Hensawang, S., 2017, Rice ... importance nutritional value and contamination, Environ. J. 21: 15-18. (in Thai)
[3] Agricultural Economics and Forecasting Center (Maejo Poll), 2017, Rice Consumption Behavior of Thai People, Faculty of Economics, Maejo University, Chiang Mai. (in Thai)
[4] Sirianusornsak, W., Soiklom, S. and Thanaruksa, R., 2016, Determination of heavy metals (Cd, Cr and Pb) in Thai rice, pp. 65-71, 54th Kasetsart University Academic Conference, Kasetsart University, Bangkok. (in Thai)
[5] Thaenghin, P., Pewnim, T. and Nakphayphan, A., 2017, Effect of cadmium to growth rates, cytotoxicity and pigment contents in rice berry (Oryza sativa L.), Silpakorn University, Veridian E-J. Sci. Tech. 4: 10-20. (in Thai)
[6] Rice Science Center, Knowledge of Riceberry rice, Available Source: http://www.dna.kps.ku.ac.th.php, November 1, 2018. (in Thai)
[7] Pholkla, S., Thongnaowarat, J., Chunchom boon, A., Jantree, K. and Wisedsri, P., 2016, Riceberry Rice Buns, Bangkaewfa Vocational College, Nakhon Pathom, 52 p. (in Thai)
[8] Leung, A., Cai, Z.W. and Wong, M.H., 2006, Environmental contamination from electronic waste recycling at Guiyu, Southeast China, J. Mater. Cycles Waste Manag. 8: 21-23.
[9] Ha, N.N., Agusa, T., Ramu, K., Tu, N.P.C., Murata, S., Bulbule, K.A., Parthasaraty, P., Takahashi, S., Subramanian, A. and Tanabe, S., 2009, Contamination by trace elements at e-waste recycling sites in Bangalore, India, Chemosp. J. 76: 9-15.
[10] Chobtam, M., 2007, The Study to Distribution of Cadmium in Paddy Field at Disposals Site of Nonthaburi and Suphanburi Province, Master Thesis, Thammasat University, Pathum Thani, 147 p. (in Thai)
[11] Alabi, O.A., Bakare, A.A., Xu, X., Lin, B., Zhang, Y. and Huo, X., 2012, Comparative evaluation of environmental contamination and DNA damage induced by electronic-waste in Nigeria and China, Sci. Total. Environ. 423: 62-72.
[12] Kruatrachue, M., 2009, Treatment of Soil and Water Contaminated with Lead by Using Plants, Mahidol University, Available Source: http://www.eht.sc.mahidol.ac.th/ article/509, February 26, 2019. (in Thai)
[13] Luo, C., Liu, C., Wang, Y., Liu, X., Li, F., Zhang, G. and Li, X., 2011, Heavy metal contamination in soils and vegetables near an e-waste processing site, South China, J. Hazard. Mater. 186: 481-490.
[14] Sawanwong, T. and Wachirawongsakorn, P., 2012, Assessment of heavy metal contamination in soil and shallot samples from shallot farming of Bantuek sub-district, Srisatchanalai district, Sukhothai province, pp. 294-298, 4th Science Research Conference, Faculty of Science, Naresuan University, Phitsanulok. (in Thai)
[15] Water Quality Management Office, 2009, Environmental Quality Situation in Huay Klity, Annual Report, Pollution Control Department, Bangkok. (in Thai)
[16] Suwannachote, P., Suppadit, T., Poungsuk, P. and Sangla, L., 2009, Growth perfor mance and productivity of Jatropha curcas Linn., Rayong variety planted in cadmium contaminated soil, J. Environ. Manage. 5: 100-117. (in Thai)
[17] Nambang, W. and Maoteja, W., 2014, Distribution of Heavy Metals in Paddy Fields around Community Landfill Ponds: A Case Study of Wang Nam Khu Sub-district, Mueang District, Phitsanulok Province, Research Report, Natural Resources and Environment, Naresuan University, Phitsanulok, 90 p. (in Thai)
[18] Panichpat, T., 2010, Partitioning of Lead Accumulation in Rice Plant, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 29 p. (in Thai)
[19] Food Institute, 2014, It Comes with Food: Heavy Metals in Tea Leafs, Thai Rath: Nfitr, 750, 1 p. (in Thai)
[20] Neeratanaphan, L., Khamma, S., Bencha wattananon, R., Ruchuwararak, P., Appa maraka, S. and Intamat, S., 2017, Heavy metal accumulation in rice (Oryza sativa) near electronic waste dumps and related human health risk assessment, Hum. Ecol. Risk. Ass. 23: 1086-1098.
[21] Sukyankij, S. and Panichpat, T., 2013, Comparison of growth and lead accumulation of sunflower and sorghum in lead contaminated soil, KKU Sci. J. 41(4): 996-1007. (in Thai)
[22] Food institute, Heavy Metal: Cadmium, Ministry of industry, Available Source: http://fic.nfi.or.th/foodsafety, February 26, 2019. (in Thai)
[23] Koomrae, B., 2006, The Relationships between the Concentrations of Manganese, Lead and Cadmium in Water and Sediment in Pasak River, Master Thesis, Thammasat University, Pathum Thani, 119 p. (in Thai)
[24] Intachote, W. and Panichpat, T., 2013, Lead accumulation in cherry tomato (Lycopersicon esculentum Mill.) CH 154 grown in lead contaminated soil from Klity village, Kanchanaburi province, Veridian E-J. Sci. 6: 959-970. (in Thai)
[25] Peralta-Videa, J.R., Lopez, M.L., Narayan, M., Saupe, G. and Gardea-Torresdey, J., 2009, The biochemistry of environmental heavy metal uptake by plants: implications for the food chain, Int. J. Biochem. Cell. Bio. 41: 1665-1677.
[26] Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T. and Niazi, N.K., 2017, Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake, J. Hazard. Mater. 325: 36-58.
[27] Manahan, S.E., 2003, Toxicology, Chemis try and Biochemistry, 3rd Ed., CRC Press, Boca Raton.
[28] Phutkhao, M., Champathong, K., Worasut pisan, O., Maneechat, P., Chidjaidial, A., Srisang, K., Boonpradup, S., Chuencharoen, T., Sutthisarnvanich, K., Meeklin, K., Kwosa kaeo, P., Klinphogup, S., Nobunthao, W., Athachusasit, S., Srisawangwong, S. and Siangsai, S., 2014, Comparison of Metal Contamination in Fresh Root and Chip of Difference Cassava Varieties, Department of Agriculture, Bangkok, 18 p. (in Thai)
[29] Foroughi, M., Najafi, P. and Toghiani, S., 2011, Trace elements removal from waste water Ceratophyllum demersum, J. Appl. Sci. Environ. Manag. 15: 197-201.
[30] Miretzky, P., Saralegui, A. and Cirelli, A.F., 2004, Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina), Chemosphere 57: 997-1005.
[31] Wittayaanumat, S., 2017, TDIR Report: Electronic Waste Management in Thailand, Thailand Development Research Institute, Bangkok, 24 p. (in Thai)
[32] U.S. Environmental Protection Agency (USEPA), 2007, Method 6010: Inductive Coupled Plasma-atomic Emission Spectrometry, District of Columbia, Washington, D.C., 30 p.
[33] U.S. Environmental Protection Agency (USEPA), 1996, Acid Digestion of Sediments, Sludges and Soils: 3050 Method B, District of Columbia, Washington, D.C., 12 p.
[34] Chand, V. and Prasad. S., 2013, ICP-OES assessment of heavy metal contamina tion in tropical marine soils: A comparative study of two digestion techniques, Micro chem. J. 111: 53-61.
[35] Bailey, R.M., Stokes, S. and Bray, H., 2003, Inductively coupled plasma mass spectrometry (ICP-MS) for dose rate determination: Some guidelines for sample preparation and analysis, Ancient. TL. 21: 11-15.
[36] Hashim, R., Song, T.H., Muslim, N.Z.M. and Yen, T.P., 2014, Determination of heavy metal levels in fishes from the lower reach of the Kelantan river, Kelantan, Malaysia, Tropic. Life Sci. Res. 25: 21-39.
[37] Yang, L., Li, Y., Xj, G., Ma, X. and Yan, Q., 2013, Comparison of dry ashing, wet ashing and microwave digestion for determination of trace elements in periostracum serpentis and periostracum cicadae by ICP-AES, J. Chil. Chem. Soc. 58: 1876-1879.
[38] Thailand Pollution Control Department (TPCD), 2004, Soil Quality Standard for Residential and Agricultural Use According, Notification of the National Environmental Board, No. 25, Bangkok.
[39] Pluemphuak, T., Mala, T. and Kumlung A., 2014, Cadmium contents in rice grown in Cd contaminated paddy fields in Mae Tao floodplains Tak province Thailand, Thammasat Int. J. Sci. Tech. 3(2): 26-37. (in Thai)
[40] Neeratanaphan, L., Intamat, S., Khammanichanh, A. and Sriuttha, M., 2015, Arsenic quantity in sticky rice (Oryza Sativa) of gold mining area, Koch Cha Sarn J. Sci. 37: 11-25. (in Thai)
[41] Rattanapaiboon, W., Dampin, N. and Chankao, K., 2015, The quantity of heavy metal accumulated in water spinach (Ipomoea aquatica Forsk) cultured in Tha Chin river, Naresuan Univ. J. Sci. Tech. 23(1): 82-93. (in Thai)
[42] Panichpat, T. and Srinives, P., 2009, Partitioning of lead accumulation in rice plants, Thai J. Agric. Sci. 42: 35-40.
[43] Department Kasetsart University, 1998, Basic Agronomy, Kasetsart University Press, Bangkok. (in Thai)
[44] Thaenghin, P., 2016, Effect of Cadmium on Silicon Content, Pigments, Antioxidant Enzyme Level and Phytochelatin Formation in Riceberry (Oryza Sativa L.), Master Thesis, Silpakorn University, Nakhon Pathom, 112 p. (in Thai)
[45] Food and Agriculture Organization (FAO), 2001, Codex Alimentarius Commission Food Additives and Contaminants, FAO/ WHO, ALINORM 01/12A, Rome, 289 p.