Comparison of Time Series Models for Forecasting Pneumonia Cases in Thailand

Main Article Content

วราพร ตั๋วทอง
สวพร หิญชีระนันทน์


The objective of this research was to compare forecasting techniques to find an appropriate model for forecasting numbers of pneumonia cases in Thailand, which consists of obvious trend and seasonality in time series. Three forecasting methods were investigated including the classical decomposition method, Winters multiplicative method and Box-Jenkins method. The numbers of pneumonia cases data reported quarterly from 2008 to 2018 were used. Compared the suitable forecasting model under the smallest mean absolute percentage error (MAPE) criterion. The results showed that the Box-Jenkins method gave the lowest MAPE. The appropriate model for forecasting the number of pneumonia cases in Thailand was the autoregressive integrated moving average model .


Download data is not yet available.

Article Details

Author Biographies

วราพร ตั๋วทอง

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยนเรศวร มหาวิทยาลัยนเรศวร ตําบลท่าโพธิ์ อําเภอเมือง จังหวัดพิษณุโลก 65000

สวพร หิญชีระนันทน์

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยนเรศวร มหาวิทยาลัยนเรศวร ตําบลท่าโพธิ์ อําเภอเมือง จังหวัดพิษณุโลก 65000


[1] Bureau of Epidemiology, Pnuemonia, Retrieved, Available Source:, September 8, 2018. (in Thai)
[2] Bureau of Epidemiology, 2019, Pneumonia Situation, Department of Disease Control, Nonthaburi. (in Thai)
[3] WESR, 2019, Disease situation and fatality from pneumonia in Chaiyaphum province, 2014-2018, Weekly Epidemiol. Surveil. Rep. 50(10): 149-156. (in Thai)
[4] Bureau of Epidemiology, 2019, National Disease Surveillance, Department of Disease Control of Thailand, Nonthaburi. (in Thai)
[5] Manmin, M., 2006, Time Series and Fore casting, Prakaypruek Publishing Center, Bangkok. (in Thai)
[6] Keerativibool, W., 2016, Forecasting model for the number of patients with pneumonia in Thailand, Public Health J. Burapha Univ. 11(1): 24-38. (in Thai)
[7] Sanguanrungsirikul, D., Chiewananta vanich, H. and Sangkasem, M., 2015, A comparative study to determine optimal models for forecasting the number of patients having epidemiological-surveillance diseases in Bangkok, KMUTT Res. Develop. J. 38(1): 35-55. (in Thai)
[8] Nakunthod, I. and Khamkhod, K., 2018, Time series modeling for the pneumonia rate of patients in Lampang province, pp. 340-358, Proceeding in 18th Graduate Studies of Northern Rajabhat University Network Conference and 4th Lampang Research, Lampang Rajabhat University, Lampang. (in Thai)
[9] Ruchiraset, A. and Tantrakarnapa, K., 2018, Time series modeling of pneumonia admissions and its association with air pollution and climate variables in Chiang Mai province, Thailand, Environ. Sci. Pollut. Res. 25: 33277-33285.
[10] Bowerman, B.L., O’Connell, R.T. and Koehler, A.B., 2005, Forecasting, Time Series, and Regression: An Applied Approach, Thomson Brooks/Cole, Belmont.
[11] Social and Quality of Life Database System, Number of Cases and Morbidity Rates of Disease Surveillance, Available Source: Default.aspx?tabid=40, September 8, 2018.
[12] Shumway, R.H. and Stoffer, D.S., 2006, Time Series Analysis and Its Applications: With R Examples, Springer, New York.
[13] R Core Team, 2018, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna.
[14] Marie, G.C., 2007, Use of ARIMA models for communicable disease surveillance, Revista Cubana de Salud Publica. 33(2).
[15] Unkel, S., Farrington, C.P., Garthwaite, P.H., Robertson, C. and Andrews, N., 2012, Statistical methods for the prospective detection of infectious disease outbreaks: A review, J. R. Stat. Soc. Ser. A 175: 49-82.
[16] Zhang, X., Zhang, T., Young, A.A. and Li, X., 2014, Applications and comparisons of four time series models in epidemiological surveillance data, PLoS ONE 9(2): e88075.