Biomass Production and Biochemical Compounds of Anabaenopsis elenkinii NUACC2.57 under Different Nitrogen Concentrations

Main Article Content

วิทยา ทาวงศ์
พงศนาถ ผ่องเจริญ
ปฏิพัทธ์ สันป่าเป้า
ปิยวัฒน์ ปองผดุง
สุพัฒน์ พลซา


This study aimed to assess growth, biomass production, and biochemical compounds of a cyanobacterial strain NUACC 2.57 isolated from Mae La River, Sing Buri. The results obtained from morphological examinations such as terminal heterocyst cells. Together with the phylogenetic relationship based on the partial 16S rDNA, it was shown that the studied strain belongs to the genus Anabaenopsis. In this study, the partial 16S rDNA sequences could not identify a strain NUACC2.57 at the species level; however, the tested strain could be identified as A. elenkinii according to the morphological comparison based on the shape and cell dimensions of cell and trichome. Then, the effects of nitrogen concentrations on growth and biochemical compounds of a strain NUACC2.57 were studied. The strain was cultured in BG medium with three different nitrogen concentrations (0.0, 1.5, and 3.0 g/L). Each treatment was run in triplicate for 28 days. The results exhibited that the strain could grow in all nitrogen concentrations tested. Moreover, the maximum values of biomass (2.48±0.07 g DW/L), phycocyanin (68.27±11.90 mg/g DW), total protein (537.07±8.36 mg/g DW), and carbohydrate (39.55±8.19 mg/g DW) contents were obtained significantly (p < 0.05) from the strain NUACC 2.57 cultured in BG medium without nitrogen (0 g/L). Considering the results obtained in the present study, the cyanobacterium A. elenkinii NUACC2.57 could be utilized for production of high-value compounds such as protein and phycocyanin. Moreover, the cultivation of A. elenkinii NUACC2.57 without nitrogen also could reduce the cost of nutrient.


Download data is not yet available.

Article Details

Author Biographies

วิทยา ทาวงศ์

ภาควิชาวิทยาศาสตร์การเกษตร คณะเกษตรศาสตร์ ทรัพยากรธรรมชาติและสิ่งแวดล้อม มหาวิทยาลัยนเรศวร ตำบลท่าโพธิ์ อำเภอเมือง จังหวัดพิษณุโลก 65000

พงศนาถ ผ่องเจริญ

ภาควิชาวิทยาศาสตร์การเกษตร คณะเกษตรศาสตร์ ทรัพยากรธรรมชาติและสิ่งแวดล้อม มหาวิทยาลัยนเรศวร ตำบลท่าโพธิ์ อำเภอเมือง จังหวัดพิษณุโลก 65000

ปฏิพัทธ์ สันป่าเป้า

ภาควิชาวิทยาศาสตร์การเกษตร คณะเกษตรศาสตร์ ทรัพยากรธรรมชาติและสิ่งแวดล้อม มหาวิทยาลัยนเรศวร ตำบลท่าโพธิ์ อำเภอเมือง จังหวัดพิษณุโลก 65000

ปิยวัฒน์ ปองผดุง

ภาควิชาวิทยาศาสตร์การเกษตร คณะเกษตรศาสตร์ ทรัพยากรธรรมชาติและสิ่งแวดล้อม มหาวิทยาลัยนเรศวร ตำบลท่าโพธิ์ อำเภอเมือง จังหวัดพิษณุโลก 65000

สุพัฒน์ พลซา

ภาควิชาวิทยาศาสตร์การเกษตร คณะเกษตรศาสตร์ ทรัพยากรธรรมชาติและสิ่งแวดล้อม มหาวิทยาลัยนเรศวร ตำบลท่าโพธิ์ อำเภอเมือง จังหวัดพิษณุโลก 65000


[1] Singh, J.S., Kumar, A., Rai, A.N. and Singh, D.P., 2016, Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability, Front. Microbiol. 7: 529.
[2] Ooms, M.D., Dinh, C.T., Sargent, E.H. and Sinton, D., 2016, Photon management for augmented photosynthesis, Nature Comm. 7: 12699.
[3] Rosales Loaiza, N., Vera, P., Aiello-Mazzarri, C. and Morales, E., 2016, Comparative growth and biochemical composition of four strains of Nostoc and Anabaena (Cyanobacteria, Nostocales) in relation to sodium nitrate, Acta Biol. Colomb. 21: 347-354.
[4] Rajneesh, P.J., Maurya, P.K., Singh, S.P., Häder, D.P. and Sinha, R.P., 2018, Cyanobacterial farming for environment friendly sustainable agriculture practices: Innovations and perspectives, Front. Environ. Sci. 6: 7.
[5] Rasmussen, R.S. and Morrissey, M.T., 2007, Marine biotechnology for production of food ingredients, Adv. Food Nutr. Res. 52: 237-292.
[6] Komárek, J., 2005, Phenotype diversity of the heterocytous cyanoprokaryotic genus Anabaenopsis, Czech Phycology, Olomouc 5: 1-35.
[7] Ballot, A., Dadheech, P.K., Haande, S. and Krienitz, L., 2008, Morphological and phylogenetic analysis of Anabaenopsis abijatae and Anabaenopsis elenkinii (Nostocales, Cyanobacteria) from tropical inland water bodies, Microbial. Ecol. 55: 608-618.
[8] Santos, K.R.S., Jacinavicius, F.R. and Sant’Anna, C.L., 2011, Effects of the pH on growth and morphology of Anabaenopsis elenkinii Miller (Cyanobacteria) isolated from the alkaline shallow lake of the Brazilian Pantanal, Fottea 11: 119-126.
[9] Krienitz, L., Dadheech, P.K. and Kotut, K., 2013, Mass developments of the cyanobacteria Anabaenopsis and Cyanospira (Nostocales) in the soda lakes of Kenya: ecological and systematic implications, Hydrobiologia 703: 79-93.
[10] Aguilera, A., Komárek, J. and Echenique, R.O., 2016, Anabaenopsis morphospecies (Cyanobacteria, Nostocales) from Los Patos shallow lake (province of Buenos Aires, Argentina), Phytotaxa 272: 173-183.
[11] Asan-Ozusaglam, M., Cakmak, Y.S. and Kaya, C., 2013, Bioactivity and antioxidant capacity of Anabaenopsis sp. (Cyano bacteria) extracts, J. Algal Biomass Utln. 4: 50-58.
[12] Vargas, M.A., Rodriguez, H., Moreno, J., Olivares, H., del Campo, J.A., Rivas, J. and Guerrero, M.G., 1998, Biochemical composition and fatty acid content of filamentous nitrogen-fixing cyanobacteria, J. Phycol. 34: 812-817.
[13] Liu, Y., Chen, T., Song, S. and Li, C., 2019, Variation in biochemical composition during encystment of the planktonic dinoflagellate Akashiwo sanguinea in N-limited cultures, Mar. Biol. 166: 120.
[14] Saha, S.K., Uma, L. and Subramanian, G., 2003, Nitrogen stress induced changes in the marine cyanobacterium Oscillatoria willei BDU 130511, FEMS Microbiol. Ecol. 45: 263-272.
[15] Patel, V.K., Sundaram, S., Patel, A.K. and Kalra, A., 2018, Characterization of seven species of cyanobacteria for high-quality biomass production, Arab. J. Sci. Eng. 43: 109-121.
[16] Pluemsab, W., Charoenhongthong, M., Purungcharoen, J. and Vongyara, T., 2001, Distribution of cyanobacteria in shrimp ponds, Supanburi province, pp. 161-167, Proceeding of the 39th Kasetsart University Annual Conference: Sciences, Kasetsart University, Bangkok. (in Thai)
[17] Chaicharoen, R., 2016, Diversity of phytoplankton and zooplankton in Bang Phra Reservoir, Burapha Sci. J. 21(3): 58-72. (in Thai)
[18] Tawong, W., 2017, Diversity of the potential 2-methylisoborneol-producing genotypes in Thai strains of Planktothricoides (Cyanobacteria), Braz. Arch. Biol. Technol. 60: e17160567.
[19] Andersen, R.A., 2005, Algal Culturing Techniques, Elsevier Academic Press, New York, 578 p.
[20] Jungblut, A.D., Hawes, I., Mountfort, D., Hitzfeld, B., Dietrich, D.R., Burns, B.P. and Neilan, B.A., 2005, Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica, Environ. Microbiol. 7: 519-529.
[21] Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K., 2018, MEGA X: Molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol. 35: 1547-1549.
[22] Nakthong, K., 2013, Optimization and Production of Phycocyanin from Cyanobacterium Oscillatoria sp., Master Thesis, Srinakharinwirot University, Bangkok, 89 p.
[23] Zhang, J.Y., Lin, G.M., Xing, W.Y. and Zhang, C.C., 2018, Diversity of growth patterns probed in live cyanobacterial cells using a fluorescent analog of a peptidoglycan precursor, Front. Microbiol. 9: 791.
[24] Soni, B., Kalavadia, B., Trivedi, U. and Madamwar, D., 2006, Extraction and purification of phycocyanin from Calothrix, Proc. Biochem. 41: 2017-2023.
[25] Bennett, A. and Bogorad, J., 1973, Complementary chromatic adaptation in filamentous blue-green alga, J. Cell Biol. 58: 419-435.
[26] Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J., 1951, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193: 265-275.
[27] DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F., 1956, Colorimetric method for determination of sugars and related substances, Anal. Chem. 28: 350-356.
[28] R Development Core Team, 2009, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Available Source:, June 1, 2019.
[29] González-Resendiz, L., Johansen, J.R., Alba-Lois, L., Segal-Kischinevzky, C., Escobar-Sánchez, V., Garcia, L.F.J., Hauer, T. and León-Tejera, H., 2018, Nunduva, a new marine genus of Rivulariaceae (Nostocales, Cyanobacteria) from marine rocky shores, Fottea, Olomouc 18: 86-105.
[30] Anjana, K., Kiran, B., Mona, S. and Kaushik, A., 2012, Biological photohydrogen production by Cyanobacteria: Future prospects as fuel, J. Environ. Res. Devel. 6: 779-783.
[31] Tassayanonchai, A. and Mala, T., 2015, The selection of some heterocystous cyanobacteria as nitrogen source for rice growing cultivation, J. Sci. Technol. Kasetsart Univ. 4(3): 1-12. (in Thai)
[32] Otero, A. and Vincenzini, M., 2003, Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity, J. Biotechnol. 102: 143-152.
[33] Lewitus, A.J. and Caron, D.A., 1990, Relative effects of nitrogen or phosphorus depletion and light intensity on the pigmentation chemical composition, and volume of Pyrenomonas salina (Cryptophyceae), Mar. Ecol. Prog. Ser. 61: 171-181.
[34] Mogany, T., Kumari, S., Swalaha, F.M. and Bux, F., 2018, Extraction and characteriza tion of analytical grade C-phycocyanin from Euhalothece sp., J. Appl. Phycol. 31: 1661-1674.
[35] Takano, H., Arai, T., Hirano, M. and Matsunaga, T., 1995, Effects of intensity and quality of light on phycocyanin production by a marine cyanobacterium Synechococcus sp. NKBG 042902, Appl. Microbiol. Biotechnol. 43: 1014-1018.
[36] Güroy, B., Karadal, O., Mantoğlu, S. and
Cebeci, I.O., 2017, Effects of different drying methods on C-phycocyanin content of Spirulina platensis powder, Ege. J. FAS. 34: 129-132.
[37] Gantar, M., Simović, D., Djilas, S. and Gonzalez, W.W., Miksovska, J., 2012, Isolation, characterization and antioxidative activity of C-phycocyanin from Limnothrix sp. strain 37-2-1, J. Biotechnol. 159: 21-26.
[38] Barka, A. and Blecker, C., 2016, Microalgae as a potential source of single-cell proteins, Biotechnol. Agron. Soc. Environ. 20: 427-436.
[39] Hu, Q., 2004, Environmental Effects on Cell Composition, pp. 83-94, In Richmond, A. (Ed.), Handbook of Microalgal Culture, Biotechnology and Applied Phycology, Blackwell Publishers, Oxford.
[40] Konopka, A. and Schnur, M., 1981, Biochemical composition and photosynthetic carbon metabolism of nutrient limited cultures of Merismopedia tenuissima (Cyanophyceae), J. Phycol. 17: 118-122.
[41] Singh, S. and Das, S., 2011, Screening, production, optimization and characterization of cyanobacterial polysaccharide, World J. Microbiol. Biotechnol. 27: 1971-1980.
[42] Jindal, N., Singh, D. and Khattar, J., 2011, Kinetics and physico-chemical characterization of exopolysaccharides produced by the cyanobacterium Oscillatoria Formosa, World J. Microbiol. Biotechnol. 27: 2139-2146.
[43] de Philippis, R., Sili, C., Paperi, R. and Vincenzini, M., 2001, Exopolysaccharide-producing cyanobacteria and their possible exploitation: A review, J. Appl. Phycol. 13: 293-299.