การใช้เส้นใยและผงไทเทเนียมไดออกไซด์กำจัดสปอร์ของ Bacillus subtilis ในน้ำ

Main Article Content

ชัญฐิศา ประพันธ์พจน์
ภารดี ช่วยบำรุง
สิทธิสุนทร สุโพธิณะ

Abstract

This study compared photocatalysis reactions from titanium dioxide powder (Degussa P25), concentrations of 0.001, 0.005, 0.01, 0.05 and 0.1 g/L, with nano-titanium dioxide fibers for inactivation of Bacillus subtilis spores. The fibers were synthesized from titanium (IV) isopropoxide and polyvinylpyrrolidone using electrospinning technic and calcined at the temperatures of 400-640 °C to obtain anatase to rutile ratio of 100 : 0, 70 : 30, 50 : 50 and 30 : 70. The fiber concentrations of 0.1, 0.25, 0.5, 1, 1.5 and 2 g/L were studied and concurrently compared with the best concentration of Degussa P25. Finally, the usage repetition of fibers for 5 times was investigated. The fiber-regeneration was conducted by heating at 100, 350, and 570 °C for 1 hour before each re-use. The experiment was conducted for 4 hours under sunlight irradiation. The results revealed that Degussa P25 at a concentration of 0.005 g/L yielded 100 % efficiency within 90-120 min, while a 1.5 g/L of the fiber with anatase to rutile ratio of 70 : 30 gave the highest efficiency, 80-99 %, within 210 min. For the usage repetition, regeneration temperature of 570 °C slightly yielded better efficiency than that of 350 °C. Both temperatures could regenerate fibers for 3 times of usage. However, the regeneration temperature of 100 °C showed the least efficiency rate.

Article Details

Section
Biological Sciences
Author Biographies

ชัญฐิศา ประพันธ์พจน์

สาขาวิชาวิทยาศาสตร์สิ่งแวดล้อม คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

ภารดี ช่วยบำรุง

สาขาวิชาวิทยาศาสตร์สิ่งแวดล้อม คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

สิทธิสุนทร สุโพธิณะ

ศูนย์เทคโนโลยีโลหะและวัสดุแห่งชาติ สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

References

[1] Zhang, L., Yan, J.H., Zhou, M.J., Yu, Y.P., Liu, Y. and Liu, Y.N., 2014, Photocatalytic degradation and inactivation of Escherichia coli by ZnO/ZnAl2O4 with heteronanostructures, Trans. Nonferrous Met. Soc. China 24: 743-749.
[2] Hamilton, J.W.J., Byrne, J.A., Dunlop, P.S.M. and Brown, N.M.D., 2008, Photo-oxidation of water using nanocrystalline tungsten oxide under visible light, Int. J. Photoenergy, 5 p., Article ID 185479.
[3] Li, L., Yalcin, B., Nguyen, B.N., Meador, M.A.B. and Cakmak, M., 2009, Flexible nanofiber-reinforced aerogel (xerogel) synthesis, manufacture, and characterization, ACS Appl. Mater. Interfaces 1: 2491-2501.
[4] Lee, S.A., Choo, K.H., Lee, C.H., Lee, H.I., Hyeon, T., Choi, W. and Kwon, H.H., 2001, Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment, Ind. Eng. Chem. Res. 40: 1712-1719.
[5] Chandrasekar, R., Zhang, L., Howe, J.Y., Hedin, N.E., Zhang, Y. and Fong, H., 2009, Fabrication and characterization of electrospuntitania nanofibers, J. Mater. Sci. 44: 1198-1205.
[6] Zhang, X.W., Xu, S.Y. and Han, G.R., 2009, Fabrication and photocatalytic activity of TiO2 nanofiber membrane, Mater. Lett. 63: 1761-1763.
[7] Yang, J., Li, D., Wang, X., Yang, X. and Lu, L., 2002, Rapid synthesis of nanocrystal line TiO2/SnO2 binary oxides and their photoinduced decomposition of methyl orange, J. Solid State Chem. 165: 193-198.
[8] Kakuma, Y., Nosaka, A.Y. and Nosaka, Y., 2015, Difference in TiO2 photocatalytic mechanism between rutile and anatase studied by the detection of active oxygen and surface species in water, Phys. Chem. Chem. Phys. 17: 18691-18698.
[9] Ngamsakpasert, C., 2015, Synthesis of Titanium Dioxide Fibers with Electrospinning for Carbendazim Residue Removal from Chinese Chives Using Photocatalysis, M.S. Thesis, Chulalongkorn University, Bangkok, 145 p. (in Thai)
[10] Ohno, T., Sarukawa, K., Tokieda, K. and Matsumura, M., 2001, Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases, J. Catal. 203: 82-86.
[11] Nicholson, W.L., Munakata, N., Horneck, G., Melosh, H.J. and Setlow, P., 2000, Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments, Microbiol. Mol. Biol. Rev. 64: 548-572.
[12] Nawarat, S., Supothina, S. and Chuaybam roong, P., 2010, Removal of Bacillus subtilis from wastewater using photocatalysis and ultraviolet-C, Thai Environ. Eng. J., 24(3): 33-42. (in Thai)
[13] Rincón, A.G. and Pulgarin, C., 2003, Photo catalytical inactivation of E. coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentra tion, Appl. Catal. B: Environ. 44: 263-284.
[14] Pelizzetti, E., Pramauro, E., Minero, C. and Serpone, N., 1990, Sunlight photocatalytic degradation of organic pollutants in aquatic systems, Waste Manage. 10: 65-71.
[15] Liu, Z., Zhang, X., Nishimoto, S., Jin, M., Tryk, D.A., Murakami, T., Fujishima, A., 2007, Anatase TiO2 nanoparticles on rutile TiO2 nanorods: A heterogeneous nano structure via layer-by-layer assembly, Langmuir 23: 10916-10919.
[16] Doh, S.J., Kim, C., Lee, S.G., Lee, S.J. and Kim, H., 2008, Development of photo catalytic TiO2 nanofibers by electro spinning and its application to degrada tion of dye pollutants, J. Haz. Mat. 154: 118-127.