ประสิทธิภาพของสารสกัดโมโนกลีเซอร์ไรด์จากน้ำมันมะพร้าวกลั่นบริสุทธิ์ในการยับยั้งการเจริญของรา แคนดิดา อัลบิแคนส์ ที่ดื้อต่อยาฟลูโคนาโซลในห้องปฏิบัติการ
Main Article Content
บทคัดย่อ
วัตถุประสงค์ของงานวิจัย คือ เพื่อศึกษาประสิทธิภาพของสารสกัดโมโนกลีเซอไรด์จากน้ำมันมะพร้าวกลั่นบริสุทธิ์ในการกำจัดรา แคนดิดา อัลบิแคนส์ (Candida albicans) สายพันธุ์ที่ดื้อและไวต่อยาฟลูโคนาโซล (fluconazole) เปรียบเทียบกับน้ำมันมะพร้าวกลั่นบริสุทธิ์ นำราแคนดิดาสายพันธุ์ที่ดื้อและไวต่อยาฟลูโคนาโซล (ATCC 62342 และ 90028 ตามลำดับ) มาทดสอบกับสารสกัดโมโนกลีเซอไรด์ความเข้มข้นร้อยละ 18 และ 36 ด้วยวิธีบรอทไมโครไดลูชั่น (broth microdilution) โดยใช้เชื้อปริมาณ 10-6-101 ซีเอฟยูต่อมิลลิลิตร (CFU/mL) ซึ่งเพาะเลี้ยงในถาดเพาะเลี้ยงเชื้อ 96 หลุม (96-well tissue culture plate) ที่อุณหภูมิ 35 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง แล้วนำสารละลายแต่ละหลุมมาเลี้ยงต่อบนอาหารเลี้ยงเชื้อซาโบรอดเด็กโทรส (sabouraud dextrose agar) เพื่อดูประสิทธิภาพการกำจัดราของสารทดลองทั้ง 2 ความเข้มข้นนี้ ซึ่งพบว่าสารสกัดโมโนกลีเซอไรด์ที่ความเข้มข้นร้อยละ 36 สามารถกำจัดเชื้อดีที่สุด จึงเลือกมาทดสอบต่อโดยเปรียบเทียบกับสารกลุ่มอื่น ๆ ได้แก่ สารสกัดโมโนกลีเซอไรด์ความเข้มข้นร้อยละ 36 ที่เตรียมล่วงหน้า 3 สัปดาห์ น้ำมันมะพร้าวกลั่นบริสุทธิ์ความเข้มข้นร้อยละ 36 ยาฟลูโคนาโซลความเข้มข้น 8 และ 0.25 ไมโครกรัมต่อมิลลิลิตร โดยใช้วิธีการทดสอบเช่นเดียวกับการทดลองข้างต้น การศึกษานี้พบว่าสารสกัดโมโนกลีเซอไรด์ความเข้มข้นร้อยละ 36 สามารถกำจัดราแคนดิดา อัลบิแคนส์ ทั้ง 2 สายพันธุ์ ที่ระดับความเข้มข้นเชื้อ 103 ซีเอฟยูต่อมิลลิลิตร ซึ่งเท่ากับกลุ่มที่ใช้ยาฟลูโคนาโซลความเข้มข้น 8 ไมโครกรัมต่อมิลลิลิตร ในสายพันธุ์ที่ดื้อต่อยา และความเข้มข้น 0.25 ไมโครกรัมต่อมิลลิลิตร ในสายพันธุ์ที่ไวต่อยา ขณะที่สารสกัดโมโนกลีเซอไรด์ความเข้มข้นร้อยละ 18 ก็สามารถกำจัดเชื้อทั้ง 2 สายพันธุ์ แต่ต่ำกว่าอยู่ที่ระดับ 102 ซีเอฟยูต่อมิลลิลิตร ซึ่งพบว่าให้ผลเช่นเดียวกับสารสกัดโมโนกลีเซอไรด์ความเข้มข้นร้อยละ 36 ที่เตรียมล่วงหน้า 3 สัปดาห์ ขณะที่น้ำมันมะพร้าวกลั่นบริสุทธิ์ความเข้มข้นร้อยละ 36 ไม่สามารถกำจัดราทั้ง 2 สายพันธุ์ ดังนั้นจึงสรุปว่าสารสกัดโมโนกลีเซอไรด์จากน้ำมันมะพร้าวกลั่นบริสุทธิ์สามารถกำจัดราแคนดิดา อัลบิแคนส์ ทั้ง 2 สายพันธุ์ ที่ดื้อและไวต่อยาฟลูโคนาโซลได้ที่ระดับความเข้มข้นเชื้อ 103 ซีเอฟยูต่อมิลลิลิตร ซึ่งให้ผลเทียบเท่าการใช้ยาฟลูโคนาโซล และสูงกว่าสารทดสอบชนิดอื่นในการทดลองนี้ ทั้งนี้พบว่าน้ำมันมะพร้าวกลั่นบริสุทธิ์ไม่สามารถกำจัดรานี้
Article Details
เอกสารอ้างอิง
[2] Bergsson, G., Arnfinnsson, J., Steingrims son, O. and Thormar, H., 2001, In vitro killing of Candida albicans by fatty acids and monoglycerides, Antimicrob. Agents. Chemother. 45: 3209-3212.
[3] Wanasaengsakul, S., Khongkhawithun, P. And Tienthong, T., 2008, In vitro efficacy of polident in reducing Candida biofilm on surface of acrylic resin, J. Dent. Assoc. Thai. 178-188.
[4] Figueiral, M.H., Azul, A., Pinto, E. and Fonseca, P.A., 2007, Denture-related stomatitis: Identification of aetiological and predisposing factors – a large cohort, J. Oral. Rehabil. 34: 448-455.
[5] Barnabe, W., de Mendonca Neto, T., Pimenta, F.C., Pegoraro, L.F. and Scolaro, J.M., 2004, Efficacy of sodium hypochlorite and coconut soap used as disinfecting agents in the reduction of denture stomatitis, Streptococcus mutans and Candida albicans, J. Oral. Rehabil. 31: 453-459.
[6] Salerno, C., Pascale, M., Contaldo, M., Esposito, V., Busciolano, M., Milillo, L., Guida, A., Petruzzi, M. and Serpico, R., 2011, Candida-associated denture stomatitis, Med. Oral. Patol. Oral. Cir. Bucal. 16(2): e139-143.
[7] Webb, B.C., Thomas, C.J., Willcox, M.D., Harty, D.W. and Knox, K.W., 1998, Candida-associated denture stomatitis, Aetiology and management: A review. Part 1. Factors influencing distribution of Candida species in the oral cavity, Aust. Dent. J. 43: 45-50.
[8] Nikawa, H., Hamada, T. and Yamamoto, T., 1998, Denture plaque past and recent concerns, J. Dent. 26: 299-304.
[9] Cannon, R.D. and Chaffin, W.L., 1999, Oral colonization by Candida albicans, Crit. Rev. Oral. Biol. Med. 10: 359-383.
[10] Webb, B.C., Thomas, C.J., Willcox, M.D., Harty, D.W. and Knox, K.W., 1998, Candida-associated denture stomatitis, Aetiology and management: A review. Part 2. Oral diseases caused by Candida species, Aust. Dent. J. 43: 160-166.
[11] Lieberman, S., Enig, M.G. and Preuss, H.G., 2006, A Review of monolaurin and lauric acid: Natural virucidal and bactericidal agents, Alter. Com. Therapi. 12: 310-314.
[12] Pappas, P.G., Rex, J.H., Sobel, J.D., Filler, S.G., Dismukes, W.E., Walsh, T.J. and , Edwards, J.E., 2004, Guidelines for treatment of candidiasis, Clin. Infect. Dis. 38: 161-189.
[13] Barchiesi, F., Maracci, M., Radi, B., Arzeni, D., Baldassarri, I., Giacometti, A. and Scalise, G., 2002, Point prevalence, microbiology and fluconazole suscepti bility patterns of yeast isolates colonizing the oral cavities of HIV-infected patients in the era of highly active antiretroviral therapy, J. Antimicrob. Chemother. 50: 999-1002.
[14] Boken, D.J., Swindells, S. and Rinaldi, M.G., 1993, Fluconazole-resistant Candida albicans, Clin. Infect. Dis. 17: 1018-1021.
[15] Fabian, M.D., Olivia Erin, M.B., Edward, T.C. and Ian, M.S.V., 2007, Standards for Essential composition and quality factors of commercial virgin coconut oil and its differentiation from RBD coconut oil and copra oil, Philip. J. Sci. 136: 119-129.
[16] Patil, U. and Benjakul, S., 2018, Coconut milk and coconut oil: Their manufacture associated with protein functionality, J. Food. Sci. 83: 2019-2027.
[17] Sankararaman, S. and Sferra, T.J., 2018, Are we going nuts on coconut oil?, Curr. Nutr. Rep. 7: 107-115.
[18] Marina, A.M., Che Man, Y.B. and Aminb, I., 2009, Virgin coconut oil: Emerging functional food oil, Trends Food. Sci. Tech. 20: 481-487.
[19] Ghani, N.A.A., Channip, A.A., Chok Hwee Hwa, P., Ja'afar, F., Yasin, H.M., Usman, A., 2018, Physicochemical properties, antioxidant capacities, and metal contents of virgin coconut oil produced by wet and dry processes, Food. Sci. Nutr.
6: 1298-1306.
[20] Řihakova, Z., Filip, V., Plockova, M., Šmidrkal, J. and Červenkova, R., 2002, Inhibition of Aspergillus niger DMF 0801 by monoacylglycerols prepared from coconut oil, Czech. J. Food. Sci. 20: 48-52.
[21] Nguyen, V.T.A., Le, T.D., Phan, H.N. and Tran, L.B., 2017, Antibacterial activity of free fatty acids from hydrolyzed virgin coconut oil using lipase from Candida rugosa, J. Lipids. 2017: 7170162.
[22] Kabara, J.J., Swieczkowski, D.M., Conley, A.J. and Truant, J.P., 1972, Fatty acids and derivatives as antimicrobial agents, Antimicrob. Agents. Chemother. 2: 23-28.
[23] Manohar, V., Echard, B., Perricone, N., Ingram, C., Enig, M., Bagchi, D. and Preuss, H.G., 2013, In vitro and in vivo effects of two coconut oils in comparison to monolaurin on Staphylococcus aureus: Rodent studies, J. Med. Food. 16: 499-503.
[24] Seleem, D., Chen, E., Benso, B., Pardi, V. and Murata, R.M., 2016, In vitro evaluation of antifungal activity of monolaurin against Candida albicans biofilms, Peer J. 4: e2148.
[25] Batovska, D.I., Todorova, I.T., Tsvetkova, I.V. and Najdenski, H.M., 2009, Antibacterial study of the medium chain fatty acids and their 1-monoglycerides: individual effects and synergistic relationships, Pol. J. Microbiol. 58: 43-47.
[26] Wang, L.Y.B., Parkin, K. and Johnson, E., 1993, Inhibition of Listeria monocyto genes by monoacylglycerols synthesized from coconut oil and milkfat by lipase-catalyzed glycerolysis, J. Agric. Food. Chem. 41: 1000-1005.
[27] Thakur, N., Garg, G., Sharma, P.K. and Kumar, N., 2012, Nanoemulsions: A review on various pharmaceutical application, Global. J. Pharm. 6: 222-225.
[28] Hamosh, M., Klaeveman, H.L., Wolf, R.O. and Scow, R.O., 1975, Pharyngeal lipase and digestion of dietary triglyceride in man, J. Clin. Invest. 55: 908-913.
[29] Nguyen, T.A.V., Le, T.D., Phan, H.N. and Tran, L.B., 2018, Hydrolysis activity of virgin coconut oil using lipase from different sources, Scientifica. (Cairo) 14: 1-6 .
[30] Wang, D., Wang, J., Wang, B. and Yu, H., 2012, A new and efficient colorimetric high-throughput screening method for triacylglycerol lipase directed evolution, J. Mole. Cat. B: Enz. 82: 18-23.
[31] Hornung, B., Amtmann, E. and Sauer, G., 1994, Lauric acid inhibits the maturation of vesicular stomatitis virus, J. Gen. Virol. 75: 353-361.
[32] Projan, S.J., Brown-Skrobot, S., Schlievert, P.M., Vandenesch, F. and Novick, R.P., 1994, Glycerol monolaurate inhibits the production of beta-lactamase, toxic shock toxin-1, and other staphylococcal exopro teins by interfering with signal transduc tion, J. Bacteriol. 176: 4204-4209.
[33] Eskandani, M., Hamishehkar, H. and Ezzati Nazhad Dolatabadi, J., 2013, Cyto/ Genotoxicity study of polyoxyethylene (20) sorbitan monolaurate (tween 20), J. DNA. Cell. Biol. 32: 498-503.
[34] Mostafa, S., Seham, A.H., Mohammed, H. and Nahed, M., 2011, Development of stable o/w emulsions of three different oils, Int. J. Pharm. Stud. Res. 2(3): 45-51.
[35] Prajapati, H.N., Dalrymple, D.M. and Serajuddin, A.T., 2012, A comparative evaluation of mono-, di- and triglyceride of medium chain fatty acids by lipid/surfactant/water phase diagram, solubility determination and dispersion testing for application in pharmaceutical dosage form development, Pharm. Res. 29: 285-305.