ประสิทธิภาพของสารสกัดโมโนกลีเซอร์ไรด์จากน้ำมันมะพร้าวกลั่นบริสุทธิ์ในการยับยั้งการเจริญของรา แคนดิดา อัลบิแคนส์ ที่ดื้อต่อยาฟลูโคนาโซลในห้องปฏิบัติการ

Main Article Content

ธนาศักดิ์ รักษ์มณี
นันทวรรณ กระจ่างตา
ยุทธพงศ์ โลไธสงค์
กษิตินษ์ นันทวิสุทธิ์
บุรฉัตร เรืองดิษฐ์
วรดา สโมสรสุข

Abstract

The aim of this study was to evaluate whether monoglyceride (MG) extracted from virgin coconut oil (VCO) has a fungicidal effect on both fluconazole-susceptible and fluconazole-resistant strains of C. albicans, comparing with VCO. Both strains of C. albicans were evaluated with 18% and 36% (v/v) MG using broth micro-dilution technique with concentrations ranging from 10-6-101 CFU/mL. The experiment was performed in 96-well tissue-culture plates. After 24-hr incubation at 35 °C, each solution was cultured on Sabouraud dextrose agar for another 24-hr to evaluate the fungicidal effects. The 36 % MG was selected as the most effective MG concentration and then used to compare the fungicidal effect with a 3-week prepared 36 % MG, 36 % VCO, 8 µg/ml and 0.25 µg/ml fluconazole. The evaluation was tested with the broth micro-dilution. The present study showed that 36 % MG extracted has a fungicidal ability as similar effect as fluconazole to kill both susceptible and fluconazole-resistant strains of C. albicans at 103 CFU/mL, while 18 % MG demonstrated this ability at 102 CFU/mL. Comparing 36 % MG with other groups, the 3-week prepared 36% MG demonstrated a less fungicidal ability at 102 CFU/mL. Interestingly, the fungicidal effect was not observed in the 36 % VCO. Thirty-six percent of MG extracted from VCO demonstrated a fungicidal ability as similar effect as fluconazole against both susceptible and fluconazole-resistant strains of C. albicans at 103 CFU/mL, which was higher than 18 % MG and 3-week prepared 36 % MG. Of note, there was no fungicidal effect of 36 % VCO.

Article Details

Section
Medical Sciences
Author Biographies

ธนาศักดิ์ รักษ์มณี

คณะทันตแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

นันทวรรณ กระจ่างตา

คณะทันตแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

ยุทธพงศ์ โลไธสงค์

คณะทันตแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

กษิตินษ์ นันทวิสุทธิ์

คณะทันตแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

บุรฉัตร เรืองดิษฐ์

คณะทันตแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

วรดา สโมสรสุข

ภาควิชาเทคนิคการแพทย์ คณะสหเวชศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

References

[1] Pootong, A., Sam-angsri, J., Thongmalila, N., Khantisitiporn, O. and Cowawintawee wat, S., 2011, The effect of lemongrass volatile oil on pathogenic Candida albicans, Thammasat Int. J. Sci. Tech. 20(4): 293-301.
[2] Bergsson, G., Arnfinnsson, J., Steingrims son, O. and Thormar, H., 2001, In vitro killing of Candida albicans by fatty acids and monoglycerides, Antimicrob. Agents. Chemother. 45: 3209-3212.
[3] Wanasaengsakul, S., Khongkhawithun, P. And Tienthong, T., 2008, In vitro efficacy of polident in reducing Candida biofilm on surface of acrylic resin, J. Dent. Assoc. Thai. 178-188.
[4] Figueiral, M.H., Azul, A., Pinto, E. and Fonseca, P.A., 2007, Denture-related stomatitis: Identification of aetiological and predisposing factors – a large cohort, J. Oral. Rehabil. 34: 448-455.
[5] Barnabe, W., de Mendonca Neto, T., Pimenta, F.C., Pegoraro, L.F. and Scolaro, J.M., 2004, Efficacy of sodium hypochlorite and coconut soap used as disinfecting agents in the reduction of denture stomatitis, Streptococcus mutans and Candida albicans, J. Oral. Rehabil. 31: 453-459.
[6] Salerno, C., Pascale, M., Contaldo, M., Esposito, V., Busciolano, M., Milillo, L., Guida, A., Petruzzi, M. and Serpico, R., 2011, Candida-associated denture stomatitis, Med. Oral. Patol. Oral. Cir. Bucal. 16(2): e139-143.
[7] Webb, B.C., Thomas, C.J., Willcox, M.D., Harty, D.W. and Knox, K.W., 1998, Candida-associated denture stomatitis, Aetiology and management: A review. Part 1. Factors influencing distribution of Candida species in the oral cavity, Aust. Dent. J. 43: 45-50.
[8] Nikawa, H., Hamada, T. and Yamamoto, T., 1998, Denture plaque past and recent concerns, J. Dent. 26: 299-304.
[9] Cannon, R.D. and Chaffin, W.L., 1999, Oral colonization by Candida albicans, Crit. Rev. Oral. Biol. Med. 10: 359-383.
[10] Webb, B.C., Thomas, C.J., Willcox, M.D., Harty, D.W. and Knox, K.W., 1998, Candida-associated denture stomatitis, Aetiology and management: A review. Part 2. Oral diseases caused by Candida species, Aust. Dent. J. 43: 160-166.
[11] Lieberman, S., Enig, M.G. and Preuss, H.G., 2006, A Review of monolaurin and lauric acid: Natural virucidal and bactericidal agents, Alter. Com. Therapi. 12: 310-314.
[12] Pappas, P.G., Rex, J.H., Sobel, J.D., Filler, S.G., Dismukes, W.E., Walsh, T.J. and , Edwards, J.E., 2004, Guidelines for treatment of candidiasis, Clin. Infect. Dis. 38: 161-189.
[13] Barchiesi, F., Maracci, M., Radi, B., Arzeni, D., Baldassarri, I., Giacometti, A. and Scalise, G., 2002, Point prevalence, microbiology and fluconazole suscepti bility patterns of yeast isolates colonizing the oral cavities of HIV-infected patients in the era of highly active antiretroviral therapy, J. Antimicrob. Chemother. 50: 999-1002.
[14] Boken, D.J., Swindells, S. and Rinaldi, M.G., 1993, Fluconazole-resistant Candida albicans, Clin. Infect. Dis. 17: 1018-1021.
[15] Fabian, M.D., Olivia Erin, M.B., Edward, T.C. and Ian, M.S.V., 2007, Standards for Essential composition and quality factors of commercial virgin coconut oil and its differentiation from RBD coconut oil and copra oil, Philip. J. Sci. 136: 119-129.
[16] Patil, U. and Benjakul, S., 2018, Coconut milk and coconut oil: Their manufacture associated with protein functionality, J. Food. Sci. 83: 2019-2027.
[17] Sankararaman, S. and Sferra, T.J., 2018, Are we going nuts on coconut oil?, Curr. Nutr. Rep. 7: 107-115.
[18] Marina, A.M., Che Man, Y.B. and Aminb, I., 2009, Virgin coconut oil: Emerging functional food oil, Trends Food. Sci. Tech. 20: 481-487.
[19] Ghani, N.A.A., Channip, A.A., Chok Hwee Hwa, P., Ja'afar, F., Yasin, H.M., Usman, A., 2018, Physicochemical properties, antioxidant capacities, and metal contents of virgin coconut oil produced by wet and dry processes, Food. Sci. Nutr.
6: 1298-1306.
[20] Řihakova, Z., Filip, V., Plockova, M., Šmidrkal, J. and Červenkova, R., 2002, Inhibition of Aspergillus niger DMF 0801 by monoacylglycerols prepared from coconut oil, Czech. J. Food. Sci. 20: 48-52.
[21] Nguyen, V.T.A., Le, T.D., Phan, H.N. and Tran, L.B., 2017, Antibacterial activity of free fatty acids from hydrolyzed virgin coconut oil using lipase from Candida rugosa, J. Lipids. 2017: 7170162.
[22] Kabara, J.J., Swieczkowski, D.M., Conley, A.J. and Truant, J.P., 1972, Fatty acids and derivatives as antimicrobial agents, Antimicrob. Agents. Chemother. 2: 23-28.
[23] Manohar, V., Echard, B., Perricone, N., Ingram, C., Enig, M., Bagchi, D. and Preuss, H.G., 2013, In vitro and in vivo effects of two coconut oils in comparison to monolaurin on Staphylococcus aureus: Rodent studies, J. Med. Food. 16: 499-503.
[24] Seleem, D., Chen, E., Benso, B., Pardi, V. and Murata, R.M., 2016, In vitro evaluation of antifungal activity of monolaurin against Candida albicans biofilms, Peer J. 4: e2148.
[25] Batovska, D.I., Todorova, I.T., Tsvetkova, I.V. and Najdenski, H.M., 2009, Antibacterial study of the medium chain fatty acids and their 1-monoglycerides: individual effects and synergistic relationships, Pol. J. Microbiol. 58: 43-47.
[26] Wang, L.Y.B., Parkin, K. and Johnson, E., 1993, Inhibition of Listeria monocyto genes by monoacylglycerols synthesized from coconut oil and milkfat by lipase-catalyzed glycerolysis, J. Agric. Food. Chem. 41: 1000-1005.
[27] Thakur, N., Garg, G., Sharma, P.K. and Kumar, N., 2012, Nanoemulsions: A review on various pharmaceutical application, Global. J. Pharm. 6: 222-225.
[28] Hamosh, M., Klaeveman, H.L., Wolf, R.O. and Scow, R.O., 1975, Pharyngeal lipase and digestion of dietary triglyceride in man, J. Clin. Invest. 55: 908-913.
[29] Nguyen, T.A.V., Le, T.D., Phan, H.N. and Tran, L.B., 2018, Hydrolysis activity of virgin coconut oil using lipase from different sources, Scientifica. (Cairo) 14: 1-6 .
[30] Wang, D., Wang, J., Wang, B. and Yu, H., 2012, A new and efficient colorimetric high-throughput screening method for triacylglycerol lipase directed evolution, J. Mole. Cat. B: Enz. 82: 18-23.
[31] Hornung, B., Amtmann, E. and Sauer, G., 1994, Lauric acid inhibits the maturation of vesicular stomatitis virus, J. Gen. Virol. 75: 353-361.
[32] Projan, S.J., Brown-Skrobot, S., Schlievert, P.M., Vandenesch, F. and Novick, R.P., 1994, Glycerol monolaurate inhibits the production of beta-lactamase, toxic shock toxin-1, and other staphylococcal exopro teins by interfering with signal transduc tion, J. Bacteriol. 176: 4204-4209.
[33] Eskandani, M., Hamishehkar, H. and Ezzati Nazhad Dolatabadi, J., 2013, Cyto/ Genotoxicity study of polyoxyethylene (20) sorbitan monolaurate (tween 20), J. DNA. Cell. Biol. 32: 498-503.
[34] Mostafa, S., Seham, A.H., Mohammed, H. and Nahed, M., 2011, Development of stable o/w emulsions of three different oils, Int. J. Pharm. Stud. Res. 2(3): 45-51.
[35] Prajapati, H.N., Dalrymple, D.M. and Serajuddin, A.T., 2012, A comparative evaluation of mono-, di- and triglyceride of medium chain fatty acids by lipid/surfactant/water phase diagram, solubility determination and dispersion testing for application in pharmaceutical dosage form development, Pharm. Res. 29: 285-305.