ขอบเขตบนสำหรับการกระจายตัวของเมทริกซ์เซอร์คูแลนท์และเมทริกซ์อา-เซอร์คูแลนท์ที่มีสมาชิกเป็นลำดับฟีโบนักชีและลำดับลูคัส
Main Article Content
Abstract
This research objective is to find upper bounds for the spread of the circulant and r-circulant matrices which entries are the Fibonacci and Lucas sequences.
Article Details
Issue
Section
Physical Sciences
References
[1] Mirsky, L., 1956, The spread of a matrix, Mathematika 3: 127-130.
[2] Johnson, C.R., Kumar, R. and Wolkowicz, H., 1985, Lower bounds for the spread of a matrix, Linear Algebra Appl. 29: 161-173.
[3] Jiang, E. and Zhan, X., 1997, Lower bounds for the spread of a Hermitian matrix, Linear Algebra Appl. 256: 153-163.
[4] Wu, J., Zhang, P. and Liao, W., 2012, Upper bounds for the spread of a matrix, Linear Algebra Appl. 437: 2813-2822.
[5] Sharma, R. and Kumar, R., 2013, Remark on upper bounds for the spread of a matrix, Linear Algebra Appl. 438: 4359-4362.
[6] Meyer, C.D., 2000, Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 718 p.
[7] Shen, S. and Cen, J., 2010, On the bounds for the norms of r-circulant Matrices with the Fibonacci
and Lucas numbers, Appl. Math. Comput. 216: 2891-2897.
[8] Zhou, J. and Jiang, Z., 2014, The spectral norms of g-circulant matrices with classical Fibonacci and Lucas numbers entries, Appl. Math. Comput. 233: 582-587.
[9] Zhou, J. and Jiang, Z., 2015, A note on spectral norms of even-order r-circulant matrices, Appl. Math. Comput. 250: 368-371.
[2] Johnson, C.R., Kumar, R. and Wolkowicz, H., 1985, Lower bounds for the spread of a matrix, Linear Algebra Appl. 29: 161-173.
[3] Jiang, E. and Zhan, X., 1997, Lower bounds for the spread of a Hermitian matrix, Linear Algebra Appl. 256: 153-163.
[4] Wu, J., Zhang, P. and Liao, W., 2012, Upper bounds for the spread of a matrix, Linear Algebra Appl. 437: 2813-2822.
[5] Sharma, R. and Kumar, R., 2013, Remark on upper bounds for the spread of a matrix, Linear Algebra Appl. 438: 4359-4362.
[6] Meyer, C.D., 2000, Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 718 p.
[7] Shen, S. and Cen, J., 2010, On the bounds for the norms of r-circulant Matrices with the Fibonacci
and Lucas numbers, Appl. Math. Comput. 216: 2891-2897.
[8] Zhou, J. and Jiang, Z., 2014, The spectral norms of g-circulant matrices with classical Fibonacci and Lucas numbers entries, Appl. Math. Comput. 233: 582-587.
[9] Zhou, J. and Jiang, Z., 2015, A note on spectral norms of even-order r-circulant matrices, Appl. Math. Comput. 250: 368-371.