สมดุลมวลของซีโอดี ไนโตรเจน และฟอสฟอรัสในระบบกำจัดสารอาหารทางชีวภาพ

Main Article Content

ฉัตรลดา เพียซ้าย
นิตยา บุญเทียน
ธันย์ชนก พรดอน
Mohamad Padri

Abstract

The aim of this project is to study mass balance of TP, TN and TCOD in enhanced biological phosphorous removal (EBPR). Anaerobic-anoxic-aerobic conditions were combined in the EBPR. This study used acetic acid as carbon source for synthetic wastewater through 20 days SRT with 1.20, 1.16 and 23.88 g/d of TP, TN and TCOD, respectively. The amount of TP, TN and TCOD in effluent were reduced to be 0.49, 8.10 x 10-2 and 0.59 g/d, respectively. Generally, the EBPR resulted TP, TN and TCOD removal as much as 53.26±14.13, 98.67±1.04 and 99.20±1.02 %, respectively. Nevertheless, phosphorus removal efficiency was low. This may be due to low SRT period. Furthermore, control of phosphorus accumulating organisms (PAOs) plays an important role in the system because the amount of PAOs affects the efficiency of phosphorus removal. However, this result can be used as a guide to customize nutrient flow into EBPR system and into municipal wastewater treatment system.

Downloads

Download data is not yet available.

Article Details

Section
วิทยาศาสตร์ชีวภาพ
Author Biographies

ฉัตรลดา เพียซ้าย

สาขาวิชาวิศวกรรมสิ่งแวดล้อม มหาวิทยาลัยเทคโนโลยีสุรนารี ตำบลสุรนารี อำเภอเมือง จังหวัดนครราชสีมา 30000

นิตยา บุญเทียน

สาขาวิชาวิศวกรรมสิ่งแวดล้อม มหาวิทยาลัยเทคโนโลยีสุรนารี ตำบลสุรนารี อำเภอเมือง จังหวัดนครราชสีมา 30000

ธันย์ชนก พรดอน

สาขาวิชาวิศวกรรมสิ่งแวดล้อม มหาวิทยาลัยเทคโนโลยีสุรนารี ตำบลสุรนารี อำเภอเมือง จังหวัดนครราชสีมา 30000

Mohamad Padri

สาขาวิชาวิศวกรรมสิ่งแวดล้อม มหาวิทยาลัยเทคโนโลยีสุรนารี ตำบลสุรนารี อำเภอเมือง จังหวัดนครราชสีมา 30000

References

[1] John, L.A., Robert, D.W., Timothy, J.B., Judith, C.C., John, G.W., George, G.R. and Paul, J.L., 1998, Chemical mass balance source apportionment of lead in house dust, Environ. Sci. Technol. 32: 108-114.
[2] Nowak, O., Franz, A., Svardal, K., Müller, V. and Kühn, V., 1999, Parameter estimation for activated sludge models with the help of mass balances, Wat. Sci. Tech. 39: 133-120.
[3] Brun, R., Kühni, M., Siegrist, H., Gujer, W. and Reichert, P., 2002, Practical identifiability of ASM2d parameters systematic selection and tuning of parameter subsets, Water Res. 36: 4113-4127.
[4] Meijer, S.C., van Loosdrecht, M.C. and Heijnen, J., 2002, Modeling the start-up of a full-scale biological phosphorous and nitrogen removing WWTP, Water Res. 36: 4667-4682.
[5] Meijer, S.C., van Loosdrecht, M.C. and Heijnen, J., 2001, Metabolic modelling of full-scale biological nitrogen and phosphorus removing wwtp’s, Water Res. 35: 2711-2723.
[6] Ministry of Natural Resources and Environment, Domestic Wastewater Treatment System, Available Source: http://mews.onep.go.th/default.aspx, March 16, 2016. (in Thai)
[7] Pollution Control Department, Ministry of Natural Resources and Environment, 2004, Wastewater Quality Standards, Available Source: http://www.pcd.go.th/info_serv/reg_std_water04.html, October 16, 2016. (in Thai)
[8] Guerrero, J., Guisasola, A. and Baeza, J. A., 2015, Controlled crude glycerol dosage to prevent EBPR failures in C/N/P removal WWTPs, Chem. Eng. J. 271: 114-127.
[9] Wei, Y., Wang, S., Ma, B., Li, X., Yuan, Z., He, Y. and Peng, Y., 2014, The effect of poly-β-hydroxyalkanoates degradation rate on nitrous oxide production in a denitrifying phosphorus removal system, Bioresour. Technol. 170: 175-182.
[10] Wang, R., Peng, Y., Cheng, Z. and Ren, N., 2014, Understanding the role of extracellular polymeric substances in an enhanced biological phosphorus removal granular sludge system, Bioresour. Technol. 169: 307-312.
[11] Chaiyaphan, W., Khiriratnikom, S. and Intharangsang, N., 2007, Study of Microbial Community and the Possibility on Saline Enhanced Biological Phosphorus Removal Using Sequencing Batch Reactor System, Master Thesis, Thaksin University, Songkhla, 722 p. (in Thai)
[12] Zuthi, M.F.R., Guo, W.S., Ngo, H.H., Nghiem, L.D. and Hai, F.I., 2013, Enhanced biological phosphorus removal and its modeling for the activated sludge and membrane bioreactor processes, Bioresour. Technol. 139: 363-374.
[13] Zheng, X., Sun, P., Han, J., Song, Y., Hu, Z., Fan, H. and Lv, S., 2014, Inhibitory factors affecting the process of enhanced biological phosphorus removal (EBPR) – A mini-review, Process. Biochem. 49: 2207-2213.
[14] Pai, T.Y., Ouyang, C.F., Su, J.L. and Leu, H.G., 2001, Modelling the steady-state effluent characteristics of the TNCU process under different return mixed liquid, Appl. Math. Model. 25: 1025-1038.
[15] Arun, V., Mino, T. and Matsuo, T., 1988, Biological mechanism of acetate uptake mediated by carbohydrate consumption in excess phosphorus removal systems, Water Res. 22: 565-570.
[16] Wentzel, M.C., Ekama, G.A. and Marais, G.v.R., 1992, Processes and modelling of nitrification denitrification biological excess phosphorus removal systems-a review, Water Sci. Technol. 25(6): 59-82.
[17] Chuang, S.H., Ouyang, C.F., Yuang, H.C. and You, S.J., 1997, Effects of SRT and do on nutrient removal in a combined as-biofilm process, Water Sci. Technol. 36(12): 19-27.
[18] Puig, S., Coma, M., Monclús, H., van Loosdrecht, M.C.M., Colprim, J. and Balaguer, M.D., 2008, Selection between alcohols and volatile fatty acids as external carbon sources for EBPR, Water Res. 42: 557-566.
[19] Rodrigo, M.A., Seco, A., Ferrer, J. and Penya-Roja, J.M., 1999, The effect of the sludge age on the deterioration of the enhanced biological phosphorus removal process, Environ. Technol. 20: 1055-1063.
[20] Randall, C.W., Barnard, J.L. and Stensel, H.D., 1992, Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal, Technomic Publishing, Lancaster.
[21] Mannina, G., Cosenza, A., Viviani, G. and Ekama, G.A., 2018, Sensitivity and uncertainty analysis of an integrated ASM2d MBR model for wastewater treatment, Chem. Eng. J. 351: 579-588.
[22] Tayà, C., Garlapati, V.K., Guisasola, A. and Baeza, J.A., 2013, The selective role of nitrite in the PAO/GAO competition, Chemosphere 93: 612-618.
[23] Chuang, S.H., Chang, W.C., Huang, Y.H., Tseng, C.C. and Tai, C.C., 2011, Effects of different carbon supplements on phosphorus removal in low C/P ratio industrial wastewater, Bioresour. Technol. 102: 5461-5465.
[24] Piasai, C., Boontian, N., Yingchon, U. and Pyae, H.A., 2017, Efficiency enhancement of biological phosphorus removal with difference carbon sources, EIT Eng. J. Res. Dev. 28(2): 41-52. (in Thai)
[25] Eaton, A.D., Clesceri, L.S., Greenberg, A.E., Franson, M.A.H., American Public Health Association, American Water Works Association and Water Environment Federation, 2005, Standard Methods for the Examination of Water and Wastewater, 20th Ed., American Public Health Association, Washington, D.C.
[26] Azzouz, A.A.H., Naas, N.A. and Darwish, K.M., 2017, Physicochemical characteriza tion of the sewage sludge from guarchia wastewater treatment plant in benghazi-libya evaluation of the organic composition, MOJBOC. 1(2): 30-48.
[27] Guojing, Y., Dongbo, W., Qi, Y., Jianwei, Z., Yiwen, L., Qilin, W., Guangming, Z., Xiaoming, L. and Hailong, L., 2018, Effect of acetate to glycerol ratio on enhanced biological phosphorus removal, Chemosphere 196: 78-86.
[28] Zheng, X., Sun, P., Lou, J., Cai, J., Song, Y., Yu, S. and Lu, X., 2013, Inhibition of free ammonia to the granule-based enhanced biological phosphorus removal system and the recoverability, Bioresour. Technol. 148: 343-351.
[29] Zhengyu, Z., Wenling, C., Tao, T. and Yongmei, L., 2018, A novel AAO-SBSPR process based on phosphorus mass balance for nutrient removal and phosphorus recovery from municipal wastewater, Water Res. 144: 763-773.
[30] Hoang, P.H., Nguyen, H.T., Tran, T.T., Tran, T.T., Do, L.P. and Le, T.N.C., 2016, Isolation and selection of nitrifying bacteria with high biofilm formation for treatment of ammonium polluted aquaculture water, J. Viet. Environ. 8: 33-40.
[31] Hu, X., Sobotka, D., Czerwionka, K., Zhou, Q., Xie, L. and Makinia, J., 2018, Effects of different external carbon sources and electron acceptors on interactions between denitrification and phosphorus removal in biological nutrient removal processes, J. Zhejiang Univ. Sci. B 19: 305-316.
[32] Piasai, C., Boontian, N., Yingchon, U. and Pyae, H.A., 2017, Effect of acetate as a sole carbon source for enhance biological phosphorus removal, Renewable Energy Sources - Research and Business (RESRB) 2017 Conference, Wrocław.
[33] Boontian, N., 2012, Using the Activated Sludge Model 2d (ASM2d) to Understand and Predict the Phosphorus Accumulating Organism Mechanism in Enhanced Biological Phosphorus Removal in Relation to Disintegrated Sludge as a Carbon Source, Doctoral Dissertation, Cranfield University, Bedford, 267 p.
[34] Barker, P.S. and Dold, P.L., 1995, COD and nitrogen mass balances in activated sludge systems, Water Res. 29: 633-643.
[35] Thammaporn, S., 2012, The Application of the Integrated System between Downflow Hanging Spone (DHS) that Uses Fungi and Bacteria as Microorganisms to Treat Wastewater with High Carbohydrate Contamination, Suranaree University of Technology, Nakhon Ratchasima, 159 p. (in Thai)
[36] Henze, M., Gujer, W., Mino, T. and van Loosdrecht, M.C.M., 2000, Activated Sludge Models ASM1, ASM2, ASM2d and ASM3, IWA Publishing, London, 121 p.
[37] Liu, W.T., Mino, T., Nakamura, K. and Matsuo, T., 1994, Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in anaerobic-aerobic activated sludge with a minimized polyphosphate content, J. Ferment. Bioeng. 77: 53-540.
[38] Liu, W.T., Nakamura, K., Matsuo, T. and Mino, T., 1997, Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactors – effect of P/C feeding ratio, Water Res. 31: 1430-1438.
[39] Adrian, O., 2004, Enhanced Biological Phosphorus Removal: Optimization through Process Analysis and Operational Improvements, The Competition Between Polyphosphate Accumulating Organisms And Glycogen Accumulating Organisms In The Enhanced Biological Phosphorous Removal Process, School of Engineering, The University of Queensland, St Lucia.
[40] Zhou, Y., Pijuan, M., Zeng, R.J., Lu, H. and Yuan, Z., 2008, Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)?, Water Res. 42: 2361-2368.