Formula Optimization for Producing High Fiber Puffed Snack Made from Sinlek Rice Flour, Black Sorghum Flour and Inulin

Main Article Content

นิภาพร กุลณา
น้องนุช ศิริวงศ์
วศะพร จันทร์พุฒ


Response surface methodology (RSM) was applied to the optimized formula for development of a high fiber and acceptable puffed snack for consumers. The three components, Sinlek rice flour (40-60 %), black sorghum flour (40-60 %) and inulin (5-15 %) were investigated by mixture design. The increase in the black sorghum flour increased the hardness and protein content of the puffed snack. Increasing inulin content caused an increased overall liking scores. Furthermore, increasing of three components could enhance fiber content. The optimum formulation was 40 % Sinlek rice flour, 45 % black sorghum and 15 % inulin. This formula produced puffed snack, with high fiber (17.72 g) and good source of protein (8.13 g). This formulation had the highest liking score of hardness (6.72), taste (6.38) and overall liking (7.23). Therefore, Sinlek rice and black sorghum could be a useful main ingredient for developing healthy snack products.


Download data is not yet available.

Article Details

Author Biographies

นิภาพร กุลณา

สาขาอาหารและโภชนาการ ภาควิชาคหกรรมศาสตร์ คณะเกษตร มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900


สาขาอาหารและโภชนาการ ภาควิชาคหกรรมศาสตร์ คณะเกษตร มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900

น้องนุช ศิริวงศ์

สาขาอาหารและโภชนาการ ภาควิชาคหกรรมศาสตร์ คณะเกษตร มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900

วศะพร จันทร์พุฒ

ภาควิชาวิทยาศาสตร์และเทคโนโลยีการอาหาร คณะอุตสาหกรรมเกษตร มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900


[1] New Nutrition Business, Top 2016 Trends from New Nutrition Business, Available Source:, March 15, 2016.
[2] Brennan, M.A., Monro, J.A. and Brennan, C.S., 2008, Effect of inclusion of soluble and insoluble fibres into extruded breakfast cereal products made with reverse screw configuration, LWT J. Sci. Technol. 43: 2278-2288.
[3] National Statistical Office, 2018, The 2017 Food Consumption Behavior Survey, Bangkok. (in Thai)
[4] Naivikul, O., 2015, Rice: Science and technology, Kasetsart University, Bangkok. (in Thai)
[5] Soonsuwon, W., Sorghum, Available Source: note/sorghum.doc, October 20, 2017.
[6] Komchadluek, Agriculture Held the 39th National Corn-Sorghum Academic Conference, Available Source:, July 31, 2019. (in Thai)
[7] Sudkaew, N., 2007, Inhibition of anemia, balsam, cancer with Sinlek rice and Riceberry rice great value of rice in the treatment of diseases, Nat. Agric. J. 10: 15-21. (in Thai)
[8] Fans, A., The High-Fiber, Gluten-Free Ancient Grain: Sorghum Flour, Available Source:, March 13, 2018.
[9] Wojtowicz, A., Moscicki, L., Oniszczuk, T., Combrzynski, M. and Mitrus, M., 2014, The effect of fiber addition on the extrusion-cooking stability and quality of enriched corn snacks, Teka Komisji Motoryzacji i Energetyki Rolnictwa J. 14: 141-146.
[10] Daengprok, W., 2011, The use of inulin is a fat substitute in low fat sausage products, Food J. 40(1): 37-40. (in Thai)
[11] Sangsukaium, P. and Suihiran, R., 2015, The Optimization of Dyestuffs Extraction from Butterfly Pea Petal Using Response Surface Methodology, pp. 1-8, Research Report, The 7th NPRU National Academic Conference, Nakhon Pathom Rajabhat University, Nakhon Pathom. (in Thai)
[12] Sadhukhan, B., Mondal, N.K. and Chattorai, S., 2016, Optimisation using central composite design (CCD) and the desirability function for sorption of methylene blue from aqueous solution onto Lemna major, Karbala Int. J. Mod. Sci. 2: 145-155.
[13] Chanpiak, A., Dumnin, P. and Hongpuay, A., 2018, Optimization of oil extraction from spent coffee grounds (Coffea Canephora var. Robusta/Coffea Arabica) by hexane using response surface methodology, J. KMUTNB 28: 799-811.
[14] Kokkaew, H., Sukhreep, K. and Pitirit, T., 2015, Optimal conditions of anthocyanin phenolic and antioxidant content in purple waxy corn cake using response surface methodology, Khon Kaen Agric. J. 43(1): 790-798. (in Thai)
[15] Na Sakon Nakhon, P.P., Kamolwan, J., Anuvat, J. and Chulaluck, C., 2018, Optimization of pumpkin and feed moisture content to produce healthy pumpkin-germinated brown rice extruded snacks, Agric. Nat. Res. J. 52: 550-556.
[16] Tanjor, S., Judprasong, K., Chaito, C. and Jogloy, S., 2012, Inulin and Fructooligosa charides in Different Varieties of Jerusalem Artichoke (Helianthus tuberosus L.), KKU Res. J. 17(11): 25-34. (in Thai)
[17] Devi, N.L., Shobha, S., Tang, X., Shaur, S. A., Dogan, H. and Alavi, S., 2013, Development of protein-rich sorghum-based expanded snacks using extrusion technology, Food Prop. J. 16: 263-276.
[18] Pardhi, S.D., singh, B., Nayik, G.A. and Dar, B.N., 2017, Evaluation of functional properties of extruded snacks developed from brown rice grits by using response surface methodology, J. Saudi Soc. Aagric. Sci. 18: 1-11.
[19] Ding, Q.B., Ainsworth, P., Plunkett, A., Tucker, G. and Marson, H., 2006, The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks, Food Eng. J. 3: 142-148.
[20] AOAC, 2012, Official Methods of Analysis of AOAC International, 19th Ed., AOAC International, Gaithersburg, MA.
[21] Megazyme, 2016, Total Dietary Fiber, International, lreland.
[22] Chalermchaiwat, P., Jangchud, K., Jangchud, A., Charunuch, C. and Priyawiwatkul, W., 2015, Antioxidant activity, free gamma-aminobutyric acid content, selected physical properties and consumer acceptance of germinated brown rice extrudates as affected by extrusion process, Food Sci. Technol. J. 64: 490-496.
[23] Pookpakdee, A., Thongphanak, P., Aekatasanawan, C., Pothisoong, T., Chuvathiwat, P. and Aunwanich, W., 2011, Plant Varieties Developed by Kasetsart University, Kasetsart University Research and Development Institute, Kasetsart University, Bangkok. (in Thai)
[24] Kunna, N., Chalermchaiwat, P., Siriwong, N. and Chanput, W., 2020, Formula optimization for producing high fiber puffed snack made from sinlek rice flour black sorghum flour and inulin, Thai Sci. Technol. J. 28(3): 419-428. (in Thai)
[25] Selani, M.M., Canniattibrazaca, S.G., Dias, C.T., Ratnayake, W.S., Flores, R.A. and Bianchini, A., 2014, Characterisation and potential application of pineapple pomace in an extruded product for fibre enhancement, Food Chem. J. 163: 23-33.
[26] Peressini, D., Foschia, M., Tubaro, F. and Sensidoni, A., 2015, Impact of soluble dietary fibre on the characteristics of extruded snacks, Food Hydrocoll. J. 43: 73-81.
[27] Kaewjun, D., 2015, Supplementation of Prebiotic Dietary Fibers in Rice Cracker, Silpakorn University, Nakhon Pathom.
[28] Rattanapanon, N., 2008. Food Chemistry, 3rd Ed., OS Printing House, Bangkok. (in Thai)
[29] Dykes, L., Rooney, W.L. and Rooney, L.W., 2013, Evaluation of phenolics and antioxidant activity of black sorghum hybrids, Cereal Sci. J. 58: 278-283.
[30] Awika, M.J., Rooney, L.W. and Waniska, R.D., 2004, Anthocyanins from black sorghum and their antioxidant properties, Food Chem. J. 90: 293-301.
[31] Afify, M.R.A., El-Belltagi, H.S., Abd El-Salam, S.M. and Omran, A.A., 2012, Oil and fatty acid contents of white sorghum varieties under soaking, cooking, germination and fermentation processing for improving cereal quality, J. Not. Bot. Hort. Agrobo. 40: 86-92.
[32] Charoenkun, A., 2010, Introduction to Food Processing, Department of Science and food technology, Faculty of Science, University of the Thai Chamber of Commerce, Bangkok. (in Thai)