Antibacterial susceptibility of Proteus mirabilis from canine urine to fosfomycin
Main Article Content
Abstract
Proteus mirabilis is one of the most common bacterial pathogens in canine urinary tract infection (UTI). Fosfomycin is a bactericidal drug with broad spectrum. Fosfomycin is suitable for an alternative drug for UTI treatment due to its high concentration in urine, as well as its high efficacy against most uropathogens. The propose of this study was to investigate the susceptibility of Proteus mirabilis from canine urine to fosfomycin. The results showed fosfomycin susceptibility rate at 80.9 % and MIC range from 0.125 to >1024 µg/mL. MIC50 and MIC90 values were 6 and 128 µg/mL, respectively. To compare with percent susceptibility to other antibacterial drugs, fosfomycin susceptibility in this study was higher than those of amoxicillin/clavulanic acid (78.7) and trimethoprim/ sulfamethoxazole (46.8). These findings may be the consequences from rarely use of fosfomycin in veterinary practice, leading to the lower resistant rates than those of other commonly used antibacterial drugs. From this study, it is suggested that fosfomycin is a good alternative drug for UTI treatment in dogs, or in combination with other antibacterial drugs to enhance the antibacterial efficacy and delay bacterial resistance. Bacterial culture and antibacterial susceptibility testing should be performed before selecting the appropriate antibacterial drug.
Article Details
References
Ling, G.V., 1984, Therapeutic strategies involving antimicrobial treatment of the canine urinary tract, J. Am. Vet. Med. Assoc. 185: 1162-1164.
Adsanychan, N., Hoisang, S., Seesupa, S., Kampa, N., Kunkitti, P. and Jitpean, S.,2019, Bacterial isolates and antimicrobial susceptibility in dogs with urinary tract infection in Thailand: a retrospective study between 2013-2017, Vet. Int. Sci.17: 21-31.
Weese, J.S., Blondeau, J., Boothe, D., Guardabassi, L.G., Gumley, N., Papich, M., Jessen, L.R., Lappin, M., Rankin, S., Westropp, J.L., 2019, International Society for Companion Animal Infectious Diseases (ISCAID) guidelines for the diagnosis and management of bacterial urinary tract infections in dogs and cats, Vet. J. 247: 8-25.
Norris, C.R., Williams, B.J., Ling, G.V., Franti, C.E., Johnson, D.L. and Ruby, A.L., 2000, Recurrent and persistent urinary tract infections in dogs: 383 cases (1969-1995), J. Am. Anim. Hosp. Assoc. 36: 484-492.
Rampacci, E., Bottinelli, M., Stefanetti, V., Hyatt, D.R., Sgariglia, E., Coletti, M. and Passamonti, F., 2018, Antimicrobial susceptibility survey on bacterial agents of canine and feline urinary tract infections: Weight of the empirical treatment, J. Glob. Antimicrob. Resist. 13:192-196.
Armbruster, C.E., Mobley, H.L.T., Pearson, M.M. and Donnenberg, M.S.,2018, Pathogenesis of Proteus mirabilis Infection. Eco. Sal. Plus. 8. doi:10.1128/ecosalplus. ESP-0009-2017
Jamil, R.T., Foris, L.A. and Snowden, J. Proteus mirabilis infections, Available Source: https://www.ncbi.nlm.nih.gov/books/NBK442017, December 1, 2021.
Schaffer, J.N. and Pearson, M.M., 2017, Proteus mirabilis and urinary tract infections: Molecular Pathogenesis and Clinical Management, Microbiol. Spectr. 3(2): 383-433.
Harada, K., Niina, A., Shimizu, T., Mukai, Y., Kuwajima, K., Miyamoto, T. and Kataoka, Y., 2014, Phenotypic and molecular characterization of antimicrobial resistance in Proteus mirabilis isolates from dogs, J. Med. Microbiol. 63:1561-1567.
Castaneda-Garcia, A., Blazquez, J. and Rodriguez-Rojas, A., 2013, Molecular Mechanisms and Clinical Impact of Acquired and Intrinsic Fosfomycin Resistance, Antibiotics. 2: 217-236.
Kahan, F.M., Kahan, J.S., Cassidy, P.J. and Kropp, H., 1974, The mechanism of action of fosfomycin (phosphonomycin), Ann. NY. Acad. Sci. 235: 364-386.
Cadorniga, R., Diaz Fierros, M. and Olay, T., 1977, Pharmacokinetic study of fosfomycin and its bioavailability, Chemotherapy. 23: 159-174.
Boothe, D. and Hubka, P., 2011, Pharmacokinetics and time dependent killing of fosfomycin in multi drug resistantEscherichia coli urinary tract infections in dogs, J. Vet. Intern. Med. 25: 742-751.
Boothe, D. M., 2012, Small animal clinical pharmacology & therapeutics,2nd Ed., Elsevier Saunders, St. Louis, 1334 p.
U.S. Food and Drug Administration. MONUROL (fosfomycin tromethamine) sachet. Available Source: https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/050717s005lbl.pdf, July 19,2022.
European Medicines Agency (EMA).fosfomycin-article-31-referral-annex-iii_en. Available Source: https://www.ema.europa.eu/en/documents/referral/fosfomycin-article-31-referral-annex-iii_en.pdf,July 19, 2022.
Hubka, P. and Boothe, D.M., 2011, In vitro susceptibility of canine and feline Escherichia coli to fosfomycin, Vet. Microbiol. 149: 277-282.
DiCicco, M., Weese, S., Neethirajan, S., Rousseau, J. and Singh, A., 2014, Fosfomycin susceptibility of canine methicillin-resistant Staphylococcus pseudintermedius isolates, Res. Vet. Sci. 96: 251-253.
Clinical and Laboratory Standards Institute (CLSI), 2020, Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 5th Ed., CLSI supplement VET01S-Ed5 ed., Clinical and Laboratory Standards Institute, USA, 250 p.
Clinical and Laboratory Standards Institute (CLSI), 2018, Performance Standards for Antimicrobial Susceptibility Testing, 28th Ed., CLSI supplement M100- 2018., Clinical and Laboratory Standards Institute, USA, 296 p.
Liofilchem® MIC Test Strip., 2017, Fosfomycin MIC Test Strip Technical Sheet. Available Source: http://www.liofilchem.net/login.area.mic/technical_sheets/MTS45.pdf, December 1, 2021.
The European Committee on Antimicrobial Susceptibility Testing (EUCAST), 2020,Breakpoint tables for interpretation of
MICs and zone Version 10.0. 2020.Available Source: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf, December 1, 2021.
Falagas, M.E., Kastoris, A.C., Kapaskelis,A.M. and Karageorgopoulos, D.E.,2010,
Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections: a systematic review, Lancet. Infect. Dis. 10: 43-50.
Papich, M. G., 2016, Saunders handbook of veterinary drugs : small and large animal, 4th Ed., Elsevier, St. Louis, 900 p.
Mirzaei, A., Nasr Esfahani, B., Raz, A., Ghanadian, M. and Moghim, S., 2021, From the Urinary Catheter to the Prevalence of Three Classes of Integrons, beta-Lactamase Genes, and Differences in Antimicrobial Susceptibility of Proteus mirabilis and Clonal Relatedness with Rep-PCR, BioMed. Res. Int. 9952769. doi:10.1155/2021/9952769.
Gravey, F., Loggia, G., de La Blanchardière, A. and Cattoir, V., 2017, Bacterial epidemiology and antimicrobial resistance profiles of urinary specimens of the elderly, Med. Mal. Infect. 47: 271-278.
Gardiner, B.J., Stewardson, A.J., Abbott, I.J. and Peleg, A.Y., 2019, Nitrofurantoin and fosfomycin for resistant urinary tract infections: old drugs for emerging problems. Aust. Prescr. 42: 14-19.
Grayson, M.L., Cosgrove, S.E., Crowe, S., Hope, W., McCarthy, J.S., Mills, J., Mouton, J.W. and Paterson, D.L., 2010, Kucers' The Use of Antibiotics: A Clinical Review of Antibacterial, Antifungal, Antiparasitic, and Antiviral Drugs, 6th Ed, CRC Press, Boca Raton, 3223 p.
Leesombun, A. and Boonmasawai, S., 2019, Categorization of antimicrobial agents prescribed in the Veterinary Teaching Hospital in Thailand, J. Appl. Anim. Sci. 12: 25-28.
Scarborough, R., Bailey, K., Galgut, B., Williamson, A., Hardefeldt, L., Gilkerson, J. and Browning, G., 2020, Use of Local Antibiogram Data and Antimicrobial Importance Ratings to Select Optimal Empirical Therapies for Urinary Tract Infections in Dogs and Cats, Antibiotics. 9: 924-942
Blondeau, J.M. and Tillotson, G.S., 1999, Formula to help select rational antimicrobial therapy (FRAT): its application to community- and hospital-acquired urinary tract infections, Int. J. Antimicrob. Agents. 12: 145-150.
Clinical and Laboratory Standards Institute (CLSI), 2008, Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals M31-A3 Approved Standard 3rd ed., Clinical and Laboratory Standards Institute, USA, 296 p.
Guardabassi, L., Schwarz, S. and Lloyd, D.H., 2004, Pet animals as reservoirs of antimicrobial-resistant bacteria, J. Antimicrob. Chemotherapy. 54: 321-332.
Bergen, P.J., Landersdorfer, C.B., Lee, H.J., Li, J. and Nation, R.L.,2012, 'Old' antibiotics for emerging multidrug-resistant bacteria, Curr. Opin. Infect. Dis. 25: 626-633.
Mouton, J.W., Ambrose, P.G., Canton, R., Drusano, G.L., Harbarth, S., MacGowan, A., Theuretzbacher, U. and Turnidge, J., 2011, Conserving antibiotics for the future: new ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective, Drug Resist Updat. 14: 107-117.
Falagas, M.E., Vouloumanou, E.K., Samonis, G. and Vardakas, K.Z., 2016, Fosfomycin, Clin. Microbiol. Rev. 29: 321-347.