New Generalizations of Fibonacci and Lucas Polynomials

Main Article Content

Poonchayar Patthanangkoor
Chonticha Chinsaard
Wisinee Ngamsriwiset
Thofun Waewkrathok


We consider the polynomials fn(x)  and ln(x)   which are generated by the recurrence relations fn(x) = 2ax fn-1(x)+(b-a2) fn-2(x)   for n >=2  and ln(x) = 2ax ln-1(x)+(b-a2) ln-2(x)  for n >=2 with the initial conditions f0(x) =0 , f1(x) =1 and  l0(x) =2 , l1(x) =2ax  where  a and  b are any non-zero real numbers. We obtain the new generalizations of Fibonacci and Lucas polynomials. Moreover, we obtain generating functions, Binet’s formulas and some identities involving  fn(x)  and ln(x) .

Article Details

Physical Sciences