Contamination and Bioremediation of Atrazine

Main Article Content

Khanitta Somtrakoon
Waraporn Chouychai

Abstract

Atrazine is a herbicide used for agricultural propose in many countries worldwide. The contamination of atrazine in soil and water occurs typically in agricultural areas. Atrazine is a biodegradable compound. Some bacteria could use atrazine as a sole source of nitrogen for their growth. There are 2 phases of atrazine biodegradation by bacteria, i.e. 1) breaking down atrazine to cyanuric acid reaction, and 2) complete cyanuric acid degradation. Also, the plant could release enzymes from the root to transform atrazine or root exudates to stimulate the degradation of atrazine by soil microorganisms. Moreover, aquatic plants could uptake and change atrazine within plant tissue. With these properties, bioremediation technology to remove atrazine contamination in the environment was developed, including bioremediation and phytoremediation. In this article, the contamination of atrazine in agricultural areas, the atrazine removal mechanism of microorganisms and plants, and the application of bioremediation technology to restore atrazine contaminated soil and water were also described.

Article Details

Section
Biological Sciences

References

Singh, S., Kumar, V., Chauhan, A., Datta, S., Wani, A.B., Singh, N. and Singh, J., 2018, Toxicity, degradation and analysis of the herbicide atrazine, Environ. Chem. Lett.16: 211-237.

Klementova, S. and Keltnerova, L., 2015, Triazine Herbicides in the Environment, pp. 71-96, In Price, A., Kelton, J. and Sarunaite, L. (Eds.), Herbicides, Physiology of Action, and Safety, IntechOpen.

Barchańska, H. and Baranowska, I., 2009, Procedures for Analysis of Atrazine and Simazine in Environmental Matrices, pp.

-84, In Whitacre D.M. (Ed), Reviews of Environmental Contamination and Toxicology Volume 200, Springer Science + Business Media.

Hernández, M., Morgante, V., Flores, C., Villalobos, P., González, M., Miralles, P., Dinamarca, A. and Seeger, M., 2008, Modern approaches for the study of s- triazine herbicide bioremediation in agricultural soils, J. Soil Sci. Plant Nut. 8(2):19-30.

de Lima, J.M., Aquino, R.F., de Souza, Magalhães C.A., Gonçalves, R.H., Nóbrega, J.C.A. and Mello, C.R. 2018, Lime and phosphate effects on atrazine sorption, leaching and runoff in soil, Ciênc. Agrotec. 40: e022919.

Almasi, H., Takdastan, A., Jaafarzadeh, N., Babaei, A.A., Birgani, Y.T, Cheraghian, B., Saki, A. and Jorfi, S., 2020, Spatial distribution, ecological and health risk assessment and source identification of atrazine in Shadegan international wetland, Iran, Mar. Pollut. Bull. 160: 111569.

Korpraditskul, R., Korpraditskul, V. and Uwatsuka, S., 1992, Degradation of the herbicide atrazine in five different Thai soils. J. Pesticide. Sci. 17: 287-289.

He, H., Liu, Y., You, S., Liu, J., Xiao, H. and Tu, Z., 2019, A review on recent treatment technology for herbicide atrazine in contaminated environment, Int. J. Env. Res. Pub. He. 16: 5129.

Jennifer, B. and Aaron, C., 2006, European Union bans atrazine, while the United States negotiates continued use, Int. J. Occup. Env. Heal. 12(3): 260-267

Erickson, B.E., 2020, September 21, US EPA Reapproves Atrazine: Agency Allows Continued Use of Common Herbicide with New Requirements. Chemical & Engineering News. Available Source: https://cen.acs.org/environment/pesticides/US-EPA-reapproves-atrazine/98/web/2020/09, September 28, 2021.

ทีมข่าวภูมิภาคโพสต์ทูเดย์, 20 กรกฎาคม 2559, สารเคมีคลุ้งเขาหัวโล้น มหันตภัยร้ายซ้ าเติมคนน่าน. สืบค้นได้จาก: https://www.posttoday.com/social/local/443794, วันที่สืบค้น 22 กันยายน 2564.

Phewnil, O., Tungkananurak, N., Panichsakpatana, S., Pitiyont, B., Siripat, N. and Watanabe, H., 2012, The residues of atrazine herbicide in stream water and stream sediment in Huay Kapo Watershed, Phetchabun Province, Thailand, Environ. Nat. Res. J. 10(10): 42-52.

Sangsirimongkolying, R., Watchayanon, M., Khunlert, P., and Chalopagorn, P., 2015, Study on contamination of some pesticide in environment in Chaibadalphiphat College, Phranakhon Rajabhat Research Journal. 10 (2): 22-37.

Wetchayanon, M., Kungskulniti, N., Charoenca, N., and Tangbanluekal, C., 2021, Assessment of agricultural pesticide contamination and health risk in main rivers of Thailand, Thai Journal of Science and Technology. 10 (1): 109-123.

Almberg, K.S., Turyk, M.E., Jones, R.M., Rankin, K., Freels, S. and Stayner, L.T., 2018, Atrazine contamination of drinking water and adverse birth outcomes in community water systems with elevated atrazine in Ohio, 2006–2008, Int. J. Env. Res. Pub. He. 15: 1889.

Stradtman, S.C. and Freeman, J.L., 2021, Mechanisms of neurotoxicity associated with exposure to the herbicide atrazine, Toxics. 9(9): 207.

Olatoye, I.O., Okocha, R.C., Oridupa, O.A., Nwishienyi, C.N., Tiamiyu, A.M. and Adedeji, O.B., 2021, Atrazine in fish feed and african catfish (Clarias gariepinus) from aquaculture farms in Southwestern Nigeria, Heliyon. 7: e06076.

Qu, M., Li, H., Li, N., Liu, G., Zhao, J., Hua, Y. and Zhu, D., 2017, Distribution of atrazine and its phytoremediation by submerged macrophytes in lake sediments, Chemoshere. 168: 1515-1522.

Sun, J.T., Pan, L.L., Zhan, Y., Tsang, D.W.C., Zhu, L.Z. and Li, X.D., 2017, Atrazine contamination in agricultural soils from the Yangtze River Delta of China and associated health risks, Environ. Geochem. Hlth. 39: 369-378.

Dou, R., Sun, J., Deng, F., Wang, P., Zhou, H., Wei, Z., Chen, M., He, Z., Lai, M., Ye, T. and Zhu, L., 2020, Contamination of

pyrethroids and atrazine in greenhouse and open-field agricultural soils in China, Sci. Total Environ. 701(20): 134916.

Struthers, J.K., Jayachadran, K. and Moorman, T.B., 1998, Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated Soil, Appl. Environ. Microb. 64(9): 3368–3375.

Bazhanov, D.P., Li, C., Li, H., Li, J., Zhang, X., Chen, X. and Yang, H., 2016, Occurrence, diversity and communitystructure of culturable atrazine degraders in industrial and agricultural soils exposed to the herbicide in Shandong Province, P.R. China. BMC Microbiol. 16: 265.

Khatoon, H. and Rai, J.P.N., 2020, Optimization studies on biodegradation of atrazine by Bacillus badius ABP6 strain using response surface methodology, Biotechnol. Rep. 26: e00459.

Yang, X., Wei, H., Zhu, C. and Geng, B., 2018, Biodegradation of atrazine by the novel Citricoccus sp. strain TT3, Ecotox. Environ. Safe. 147: 144-150.

Ma, L., Chen, S., Yuan, J., Yang, P., Liu, Y. and Stewart, K., 2017, Rapid biodegradation of atrazine by Ensifer sp. strain and its degradation genes, Int. Biodeter, Biodegr. 116: 133-140.

Zhang, J., Liang, S., Wang, X., Lu, Z., Sun, P., Zhang, H. and Sun, F., 2019, Biodegradation of atrazine by the novel Klebsiella variicola strain FH-1. BioMed Res. Int. 2019: 4756579.

Zhao, X., Wang, L., Ma, F., Bai, S., Yang, J. and Qi, S., 2017, Pseudomonas sp. ZXY1, a newly isolated and highly efficient atrazine-degrading bacterium, and optimization of biodegradation using response surface methodology, J. Environ. Sci. 54: 152-159.

Swissa, N, Nitzan, Y., Langzam, Y. and Cahan, R., 2014, Atrazine biodegradation by a monoculture of Raoultella planticola isolated from a herbicides wastewater treatment facility, Int. Biodeter, Biodegr. 92: 6-11.

Govantes, F., Porrúa, O., García-González, V. and Santero, E., 2009, Atrazine biodegradation in the lab and in the field: enzymatic activities and gene regulation. Microb. Biotechnol. 2(2): 178-185.

Govantes, F., García-González, V., Porrúa, O., Platero, A.I., Jiménez-Fernández, A. and Santero, E. 2010, Regulation of the atrazine-degradative genes in Pseudomonas sp. strain ADP, FEMS Microbiol.Lett., 310(1): 1-8.

de Souza, M. L., Seffernick, J., Martinez, B., Sadowsky, M. J. and Wackett, L. P., 1998, The atrazine catabolism genes atzABC are widespread and highly conserved, J. Bacteriol. 180(7): 1951-1954.

El Sebaï, T., Devers-Lamrani, M., Changey, F., Rouard, N. and Martin-Laurent, F., 2011, Evidence of atrazine mineralization in a soil from the Nile Delta: Isolation of Arthrobacter sp. TES6, an atrazine-degrading strain. Int. Biodeter Biodegr. 65(8):1249-1255.

Sopid, S., 2014, Phylogenetic characterization of atrazine-degrading bacteria isolated from agricultural soil in Eastern Thai- land. World Academy of Science, Engineering and Technology, Open Science Index 92, International Journal of Agricultural and Biosystems Engineering, 8(8), 890 - 893.

Sajjaphan, K., Heepngoen, P., Sadowsky, M.J. and Boonkerd, N., 2010, Arthrobacter sp. strain KU001 isolated from a Thai soil

degrades atrazine in the presence of inorganic nitrogen sources. J. Microbiol. Biotechnol. 20(3): 602-608.

James, A. and Singh, D.K., 2018, Assessment of atrazine decontamination by epiphytic root bacteria isolated from

emergent hydrophytes, Ann. Microbiol. 68: 953-962.

Jiang, Z., Deng, S., Wang, L., Hu, Y., Cao, B., Lv, J., Qu, J., Wang, L., Wang, Y. and Zhang, Y., 2021, Nicosulfuron inhibits atrazine biodegradation by Arthrobacter sp. DNS10: Influencing mechanisms insight from bacteria viability, gene transcription and reactive oxygen species production, Environ. Pollut. 273: 116517.

Jiang, Z., Chen, J., Li, J., Cao, B., Chen, Y., Liu, D., Wang, X. and Zhang, Y., 2020, Exogenous Zn2+ enhance the biodegradation of atrazine by regulating the chlorohydrolase gene trzN transcription and membrane permeability of the degrader Arthrobacter sp. DNS10, Chemosphere. 238: 124594.

Jiang, Z., Zhang, X., Wang, Z., Cao, B., Deng, S., Bi, M. and Zhang, Y., 2019, Enhanced biodegradation of atrazine by Arthrobacter sp. DNS10 during co-culture with a phosphorus solubilizing bacteria: Enterobacter sp. P1, Ecotox. Environ. Safe. 172: 159-166.

Jakinala, P., Lingampally, N., Kyama, A. and Hameeda, B., 2019, Enhancement of atrazine biodegradation by marine isolate Bacillus velezensis MHNK1 in presence of surfactin lipopeptide, Ecotox. Environ. Safe. 182: 109372.

Szewczyk, R., Rożalska, S., Mironenka, J. and Bernat, P., 2020, Atrazine biodegradation by mycoinsecticide Metarhizium robertsii: Insights into its amino acids and lipids profile, J. Environ. Manage. 262:110304.

Dhiman, N., Jasrotia, T., Sharma, P., Negi, S., Chaudhary, S., Kumar, R., Mahnashi, M.H., Umar, A. and Kumar, R. 2020, Immobilization interaction between xenobiotic and Bjerkandera adusta for the biodegradation of atrazine, Chemosphere. 257: 127060.

Burken, J.G. and Schnoor, J.L. 1997. Uptake and Metabolism of Atrazine by Poplar Trees. Environ. Sci. Technol. 31:1399-1406

Albright III, V.C. and Coats, J.R., 2014, Disposition of atrazine metabolites following uptake and degradation of atrazine in switchgrass, Int. J. Phytoremediation, 16(1): 62-72.

Lin, C.H., Lerch, R.N., Garrett, H.E. and George, M.F., 2008, Bioremediation of atrazine-contaminated soil by forage grasses: Transformation, uptake, and detoxification, J. Environ. Qual. 37: 196-206.

Piutti, S., Hallet, S., Rousseaux, S., Philippot, L., Soulas, G., and Martin-Laurent., 2002, Accelerated mineralisation of atrazine in maize rhizosphere soil. Biol. Fertil. Soils. 36: 434-441.

Marecik, R., Króliczak, P., Czaczyk, K., Białas, W., Olejnik, A., and Cyplik, P., 2008, Atrazine degradation by aerobic microorganisms isolated from the rhizosphere of sweet flag (Acorus calamus L.). Biodegradation. 19:293–301.

Wenger, K., Bigler, L., Suter, M.J.F., Schnenberger, R., Gupta, S.K. and Schulin, R., 2005, Effect of corn root exudates on the degradation of atrazine and its chlorinated metabolites in soils, J. Environ.Qual. 34: 2187-2196.

Jiang, Z., Jiang, D., Zhou, Q., Zheng, Z., Cao, B., Meng, Q., Qu, J., Wang, Y. and Zhang, Y., 2020, Enhancing the atrazine tolerance of Pennisetum americanum (L.) K. Schum by inoculating with indole-3-acetic acid producing strain Pseudomonas chlororaphis PAS18, Ecotox. Environ. Safe. 202: 110854.

Pérez, D.J., Doucette, W.J. and Moore, M.T., 2022, Atrazine uptake, translocation, bioaccumulation and biodegradation in cattail (Typha latifolia) as a function of exposure time, Chemosphere.287: 132104.

Wang, Q., Zhang, W., Li, C. and Xiao, B., 2012, Phytoremediation of atrazine bythree emergent hydrophytes in a hydroponic system, Water Sci. Technol. 66(6):1282-1288.

Qu, M., Li, N., Li, H., Yang, T., Liu, W., Yan, Y., Feng, X. and Zhu, D., 2018, Phytoextraction and biodegradation of atrazine by Myriophyllum spicatum and evaluation of bacterial communities involved in atrazine degradation in lake sediment, Chemosphere. 209: 439-488.

Marecik, R., BiaŁas, W., Cyplik, P., Ławniczak, Ł. and Chrzanowski, Ł., 2012, Phytoremediation potential of three wetland plant species toward atrazine environmentally relevant concentrations, Pol. J. Environ. Stud. 21(3): 697–702.

Merini, L.J., Bobillo, C., Cuadrado, V., Corach, D. and Giulietti, A.M., 2009, Phytoremediation potential of the novel

atrazine tolerant Lolium multiflorum and studies on the mechanisms involved, Environ. Pollut. 157(11): 3059-3063.

Ibrahim, S.I., Abdel, Lateef M.F., Khalifa, H.M.S. and Abdel Monem, A.E., 2013, Phytoremediation of atrazine-contaminated soil using Zea mays (maize), Ann. Agr. Sci. 58(1): 69-75.

AlbrightIII, V.C., Murphy, I.J., Anderson, J.A. and Coats, J.R., 2013, Fate of atrazine in switchgrass–soil column system, Chemosphere. 90(6): 1847-1853.

Sánchez, V., López-Bellido, F.J., Cañizares, P. and Rodríguez, L., 2017, Assessing the phytoremediation potential of crop and grass plants for atrazine-spiked soils, Chemosphere. 185: 119-126.

Somtrakoon, K. and Chouychai, W., 2022, Phytoremediation of arsenic - contaminated in the environment. Thai Science and Technology Journal. 30 (3): 59-72.