On the Norms of Geometric and Symmetric Geometric Circulant Matrices with the Exponential Function
Main Article Content
Abstract
In this research, we give the upper and lower bounds for the spectral norm of geometric and symmetric geometric circulant matrices with the exponential function, and we obtain 1-norm and ∞-norm for them. Furthermore, some numerical examples for demonstrating the validity of the hypotheses of our results are given.
Article Details
References
Baijuan S., 2019, On the Norms of r-Hankel and r-Toeplitz Matrices, Mathematical Problems in Engineering, 1, 1-4, doi:10.1155/2019/6729701.
Baijuan S., 2021, On the Norms of RFMLR-Circulant Matrices with the Exponential and Trigonometric Functions, J. Math., doi:10.1155/2021/2079104.
Baijuan S., 2021, On the spectral norms of some circulant matrices with the trigonometric functions, J. Inequal. Appl., 225.
Horn, R. A., & Johnson, C. R. (1991). Topics in Matrix Analysis. Cambridge University Press, Cambridge.
Kizilates, C., Tuglu, N., 2016, On the bounds for the spectral norms of geometric circulant matrices, J. Inequal. Appl., 312, doi:10.1186/s13660-016-1255-1.
Kizilates, C., Tuglu, N., 2018, On the Norms of Geometric and Symmetric Geometric Circulant Matrices with the Tribonacci Number, J. Sci., 31(2), 555-567.