Erythromycin-Loaded Poly (Vinyl Alcohol)/Chitosan/Collagen Electrospun Fiber Mats as Antibacterial Wound Dressings

Main Article Content

Narakorn Paengyotha
Patcharaporn Wutticharoenmongkol

Abstract

Electrospun fibers composed of poly (vinyl alcohol) (PVA), chitosan (CS), and collagen (CG) at different ratios and encapsulating erythromycin (EM) were fabricated using the electrospinning technique and crosslinked with glutaraldehyde for potential wound dressing applications. This study investigated the solution factors influencing fiber morphology, physical and chemical properties, EM release characteristics, antioxidant activity, and antibacterial properties. The obtained nanofibers were smooth and uniform, with diameters ranging from 164 to 218 nm. After crosslinking, the fiber diameters increased to a range of 182 to 228 nm. Contact angle measurements show higher hydrophilicity of the fiber mats with increasing CG content or decreasing PVA content, resulting in a higher degree of swelling and weight loss after immersion in a phosphate buffer solution (pH 7.4). The maximum cumulative release of EM ranged from 51.6% to 73.1%, while the maximum antioxidant activity ranged from 65% to 70%. Additionally, the electrospun fiber mats showed antibacterial activity against both Staphylococcus aureus and Escherichia coli. These findings indicate that the electrospun PVA/CS/CG – EM fiber mats possessed suitable properties for use as wound dressings

Article Details

Section
Engineering and Architecture

References

Lee J.K.Y., Chen N., Peng S., Li L., Tian L., Thakor N et al.,2018, Polymer-based composites by electrospinning: Preparation & functionalization with nanocarbons, Prog. Polym. Sci. 86: 40-84. doi: 10.1016/j.progpolymsci.2018.07.002

Ju T., Gaisford S., Williams GR., 2024, Ciprofloxacin-loaded electrospun nanofibres for antibacterial wound dressings, J. Drug Delivery Sci. Technol. 91.

Drosou C, Krokida M., & Biliaderis CG, 2018, Composite pullulan-whey protein nanofibers made by electrospinning: impact of process parameters on fiber morphology and physical properties, Food Hydrocoll. 77: 726–735.

Kopp A., Smeets R., Gosau M., et al., 2020, Effect of process parameters on additive-free electrospinning of regenerated silk fibroin nonwovens, Bioact Mater. 5: 241–252.

Khorasani M. T., Joorabloo A., Moghaddam A., Shamsi H. & Mansoorimoghadam Z., 2018, Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application, Int. J. Biol. Macromol. 114: 1203–1215.

Liang Y., He J., Guo B., 2021, Functional Hydrogels as Wound Dressing to Enhance Wound Healing, ACS Nano. 15(8): 12687-722.

Onsri P., Janwised S., Chatkumpjunjalearn T., Kraisuwan W., 2024, Fabrication and characterization of chitosan derivative-poly (vinyl alcohol) blend films for food packaging applications, Thai Sci. Technol. J. 32(1): 33-48 (in Thai)

Jia, Y. T., Gong, J., Gu, X. H., Kim, H. Y., Dong, J., & Shen, X. Y., 2007, Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method, Carbohydr. Polym. 67(3): 403–409.

Ottania V., Raspantib M. & Ruggeria A., 2001 Collagen structure and functional implications, Micron. 32: 251–260

Zhang X., Tang K., Zheng X., 2016, Electrospinning and crosslinking of COL/PVA Nanofiber-microsphere Containing Salicylic Acid for Drug Delivery, J. Bionic Eng. 13(1): 143-9.

Phromchan W., Rugkong., Chiarawipa R., 2022, Effects of chitosan films and temperature on shelf life of kratom (Mitragyna speciosa (Korth.) Havil) leaves, Thai Sci. Technol. J. 30(5): 80-91 (in Thai)

Wang M., Roy AK., Webster TJ., 2016, Development of Chitosan/Poly (Vinyl Alcohol) Electrospun Nanofibers for Infection Related Wound Healing, Front Physiol. 7:683.

J. H., Liang & Han X., 2013, Structure-activity relationships and mechanism of action of macrolides derived from erythromycin as antibacterial agents, Curr. Top. Med. Chem. 13(24): 3131–3164.

Darbasizadeh B., Fatahi Y. Feyzi-Barnaji B. Arabi M., Motasadizadeh H., Farhadnejad H., et al.,2019, Crosslinked-polyvinyl alcohol-carboxymethyl cellulose/ZnO nanocomposite fibrous mats containing erythromycin (PVA-CMC/ZnO-EM): Fabrication, characterization and in-vitro release and anti-bacterial properties, Int J Biol Macromol. 141:1137-46.

Thairin T, Wutticharoenmongkol P., 2021, Ciprofloxacin-loaded alginate/poly (vinyl alcohol)/gelatin electrospun nanofiber mats as antibacterial wound dressings, J. Ind. Text. 51(1_suppl): 1296S-322S.

Sukmongkolwongs C., Sawasiticher P., Wutticharoenmongkol P., 2024, Electrospun Cellulose Acetate Nanofibers Containing Clinacanthus nutans (Phayayo) Crude Extract as Potential Wound Dressings, J. C. Sci. Tech. 14(1).

Wang M., Wang L., Huang Y., 2007, Electrospun Hydroxypropyl Methyl Cellulose Phthalate (HPMCP)/Erythromycin Fibers for Targeted Release in Intestine, J. Appl. Polym. Sci. 106:2177–2184. doi: 10.1002/app.25666.

Bertho G., Ladam P., Gharbi-Benarous J., Delaforge M., Girault J., 1998, Solution conformation of methylated macrolide antibiotics roxithromycin and erythromycin using NMR and molecular modelling. Ribosome-bound conformation determined by TRNOE and formation of cytochrome P450-metabolite complex, Int. J. Biol. Macromol. 22:103-127.

Laiprasert A, Thungrit W, Wutticharoenmongkol P., 2022, Chitosan/Poly (vinyl alcohol)/ Collagen hydrogel composites containing jackfruit axis extract for wound dressing application, Interdiscip. Res. Rev. 17(6): 1-8.

Wan J, Jiang F, Xu Q, Chen D, Yu B, Huang Z, et al., 2017, New insights into the role of chitosan oligosaccharide in enhancing growth performance, antioxidant capacity, immunity and intestinal development of weaned pigs, RSC Advances. 7(16): 9669-79.

Darbasizadeh B., Fatahi Y., Feyzi-Barnaji B., Arabi M., Motasadizadeh H., Farhadnejad H et al.,2019, Crosslinked-polyvinyl alcohol-carboxymethyl cellulose/ZnO nanocomposite fibrous mats containing erythromycin (PVA-CMC/ZnO-EM): Fabrication, characterization and in-vitro release and anti-bacterial properties, Int J Biol Macromol. 141: 1137-46.