Purification of Cyclodextrin Glycosyltransferase and Amylomaltase for Rutin Glycoside Synthesis
Main Article Content
Abstract
Rutin, a bioflavonoid with beneficial properties, suffers from poor water solubility and low stability, leading to inadequate gastrointestinal absorption. To overcome these limitations, the synthesis of rutin glycosides with improved solubility and stability was investigated using cyclodextrin glycosyltransferase (CGTase) and amylomaltase (AMase). This study aimed to identify the most effective enzyme for catalyzing the transglycosylation reaction. CGTase, derived from recombinant p19bBC in Escherichia coli BL21 (DE3), was produced by shaking incubation at 250 rpm and 37°C for 24 hours, with an IPTG concentration of 0.2 mM. The CGTase was purified by starch adsorption, which increased the enzyme purity 5-fold with a specific activity of 4,530 U/mg, a 73% yield, and a molecular weight of 72 kDa. Similarly, AMase was produced from recombinant p19bAMY in E. coli BL21 (DE3) under the same incubation conditions, with an IPTG concentration of 0.8 mM. The enzyme was purified using HisTrap FF column, resulting in a 56-fold increase in purity, a specific activity of 391 U/mg, a 51% yield, and a molecular weight of 60 kDa. Thin-layer chromatography (TLC) analysis of the transglycosylation reactions revealed that CGTase catalyzed the formation of four distinct rutin glycosides (RG1-RG4) when beta-cyclodextrin was used as the glycosyl donor. In contrast, AMase did not catalyze the formation of any rutin derivatives. Therefore, CGTase is considered a promising enzyme for the synthesis of rutin glycosides.
Article Details
References
Kreft, I., Fabjan, N. and Yasumoto, K., 2006, Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products, Food Chem. 98: 508-512.
Ganeshpurkar, A. and Saluja, A. K., 2017, The pharmacological potential of rutin, Saudi. Pharm. J. 25(2): 149-164.
Memar, M. Y., Yekani, M., Sharifi, S. and Dizaj, S. M., 2022, Antibacterial and biofilm inhibitory effects of rutin nanocrystals, Biointerface Res. Appl. Chem. 13(2): 132.
Babazadeh, A., Ghanbarzadeh, B. and Hamishehkar, H., 2016, Novel nanostructured lipid carriers as a promising food grade deliverysystem for rutin, J. Funct. Foods. 26: 167-175.
Şamlı, M., Oğuz, B. and Figen, K., 2014, Characterization of silkfibroin based films loaded with rutin–β-cyclodextrin inclusion complexes, J. Incl. Phenom. Macrocycl. Chem. 80: 37-49.
José, L., González, A., Ana, P., Miguel, A., Yoshihiko, H., María, F., Antonio, O. B., Jesús, JB. and Francisco, J. P., 2021, Polyglucosylation of rutin catalyzed by cyclodextrin glucanotransferase from Geobacillus sp.: Optimization and chemical characterization of products, Ind.Eng. Chem.Res.60(51):18651-18659.
Plaza, M., Pozzo, T., Liu, J., Kazi, Z. G., Turner, C. and Karlsson, E. N., 2014, Substitu enteffects on in vitro antioxidizing properties, stability, and solubility in flavonoids, J. Agric. Food. Chem. 62(15): 3321-3333.
Chauhan, V., Kaushal, D., Dhiman, V. K., Kanwar,S.S.,Singh, D., Dhiman,V.K.and Pandey, H.,2022, An insight in developing carrier-free immobilized enzymes,Front. Bioeng. Biotechnol. 2(10): 794411.
Lim, C. H., Rasti,B., Sulistyo, J.and Hamid, M. A., 2021, Comprehensive study on transglycosylation of CG Tase from various sources, Heliyon. 7(2): e06305.
Nakapong, S., Tumhom, S., Kaulpiboon, J.and Pongsawasdi,P.,2022, Heterologous expression of 4α-glucanotransferase: overproduction and properties for industrialapplications, World J. Microbiol. Biotechnol. 38(2): 36.
Han, R., Ge, B., Jiang, M., Xu, G., Dong, J. and Ni, Y., 2017, High production of genistein diglucoside derivative using cyclodextrin glycosyltransferase from Paenibacillus macerans, J. Ind. Microbiol. Biotechnol. 44(9): 1343-1354.
Lee, J. Y., Kim, H., Moon, Y., Kwak, S., Kang, C. G.,Park, C., Jo, J.,Kim, S. W.,Pal, K., Kang, D. H. and Kim, D., 2022, Enhancement of the water solubility and antioxidant capacities of mangiferin by transglucosylation using a cyclodextrin glycosyltransferase, Enzyme Microb.Technol. 159: 110065.
Rudeekulthamrong, P. and Kaulpiboon, J., 2020, Optimization of amylomaltase for thesynthesisof α-arbutin derivatives as tyrosinase inhibitors, Carbohydr. Res. 494: 108078.
Saehu, S., Srisimarat, W., Prousoontorn, M. H. and Pongsawasdi, P., 2013, Transglucosylation reaction of amylomaltase for the synthesis of anticariogenic oligosaccharides, J. Mol. Catal. B Enzym. 88: 77- 83.
Choi,S.S.,Park, H.R.and Lee,K. A.,2021, A comparative study of rutin and rutin glycoside: Antioxidant activity, anti-inflammatory effect, effect on platelet aggregation and blood coagulation, antioxidants. 10(11): 1696.
K a u l p i b o o n , J., Prasong, W., Rimphanitchayakit,V., Murakami,S., Aoki, K. and Pongsawasdi, P., 2020, Expression and characterization of a fusion protein-containing cyclodextrin glycosyltransferase from Paenibacillus sp. A11, J. Basic. Microbiol. 50(5): 427-435.
Watanasatitarpa, S., Rudeekulthamrong, P., Krusong, K., Srisimarat, W., Zimmermann, W., Pongsawasdi, P. and Kaulpiboon, J., 2014, Molecular mutagenesis at Tyr-101 of the amylomaltase transcribed from a gene isolated from soil DNA, Appl. Biochem. Microbiol. 50(3): 243-252.
C h ar o e ns a p y a n a n , R., Ito, K., Rudeekulthamrong, P. and Kaulpiboon, J., 2016, Enzymatic synthesis of propyl-α-glycosides and their application as emulsifying and antibacterial agents, Biotechnol. Bioprocess Eng. 21: 389-401.
Fuwa, H., 1954, A new method for microdetermination of amylase activity by the use of amylose as the substrate, J. Biochem. 41(5): 583-603.
Bradford, M. M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principleof protein-dye binding, Anal. Biochem. 72(1): 248-254.
Srisimarat, W., Powviriyakul, A., Kaulpiboon, J.,Krusong,K., Zimmermann, W. and Pongsawasdi, P., 2011, A novel amylomaltase from Corynebacterium glutamicum and analysisof thelarge-ring cyclodextrin products, J. Incl. Phenom. Macrocycl. Chem. 70(3): 369-375.
Park, J. H., Kim, H. J., Kim, Y. H., Cha, H. K., Young, W., Kim, T. J., Do, H. and Park, K. H.,2007,The action mode of Thermus aquaticus YT-I 4-α-glucanotransferase and its chimeric enzymes introduced with starch-binding domain on amylose and amylopectin, Carbohydr.Polym. 67: 164-173.
Weber,K. and Osborn, M.,1975,Proteins and sodium dodecyl sulfate: Molecular weight determinationon polyacrylamide gels and related procedures, The Proteins. 1: 179-223.
Rajput, K. N., Patel, K. C. and Trivedi, U. B., 2016, A novel cyclodextrin glucanotransferase from an alkaliphile Microbacterium terrae KNR9:Purification and properties, 3 Biotech. 6(2): 168.
Lorthongpanich, N., Mahalapbutr, P., Rungrotmongkol,T., Charoenwongpaiboon, T. and Prousoontorn, M. H., 2022, Fisetin glycosides synthesized by cyclodextrin glycosyltransferase from Paenibacillus sp. RB01:characterization, molecular docking, and antioxidant activity, Peer J. 10: e13467.
Kitayska, T., Petrova, P., Ivanova, V. and Tonkova, A. I., 2011, Purification and
properties of a new thermostable cyclodextrin glucanotransferase from Bacillus pseudalcaliphilus 8SB, Appl. Biochem. Biotechnol. 165(5-6): 1285–1295.
Mehboob,S., Ahmad, N., Munir,S., Ali,R., Younas, H. and Rashid, N., 2020, Gene cloning, expression enhancement in Escherichia coli and biochemical characterization of a highly thermostable amylomaltase from Pyrobaculum calidifontis, Int. J. Biol. Macromol. 165: 645–653.
Tumhom,S., Nimpiboon,P., Wangkanont, K . and Pongsawasdi, P., 2021, Streptococcus agalactiae amylomaltase offers insight into the transglycosylation mechanism and the molecular basis of thermostability among amylomaltases, Sci. Rep. 11(1): 6740.
Lee, Y. S., Zhou, Y., Park, D. J., Chang, J. and Choi, Y. L., 2013, β-cyclodextrin production by the cyclodextrin glucanotransferase from Paenibacillus illinoisensis ZY-08: cloning, purification, and properties, World J. Microbiol. Biotechnol. 29(5): 865–873.
Liu, Z., Wu, G. and Wu, H., 2022, Molecular cloning, and optimized production and characterization of recombinant cyclodextrin glucanotransferase from Bacillus sp. T1, 3 Biotech. 12(3): 58.
Tao, X.,Su,L., Wang,L., Chen, X.and Wu, J., 2020, Improved production of cyclodextrin glycosyltransferase from Bacillus stearothermophilus NO2 in Escherichia coli via directed evolution, Appl. Microbiol. Biotechnol. 104(1): 173–185.
Bosito, E. F., Montecillo, A., Franco, R., Ann, S., Noel, B., Aryana, L., Mendoza, B. and Lantican, N.,2023, Alkalihalobacillus lehensis M136, a novel alkaliphilic, cyclodextrin glucanotransferase(CGTase)- producing isolate from Manleluag Hyperalkaline Spring in Pangasinan, Philippines, Philipp. J. Sci. 152(1): 109-124.
Mehboob, S., Ahmad, N., Rashid, N., Imanaka, T. and Akhtar, M., 2016, Pcal_0768, a hyperactive 4-α-glucanotransferase from Pyrobacculum calidifontis, Extremophiles. 20(4): 559–566.
Tantanarat, K., O'Neill, E. C., Rejzek, M., Field, R. A. and Limpaseni, T., 2014, Expression and characterization of 4-α-glucanotransferase genes from Manihot esculenta Crantz and Arabidopsis thaliana and their use for the production of cycloamyloses, Process Biochem. 49(1): 84-89.
Jeong, D. W., Jeong, H. M.,Shin,Y. J., Woo, S. H. and Shim, J. H., 2019, Properties of recombinant 4-α-glucanotransferase from Bifidobacterium longum subsp. longum JCM 1217 and its application, Food Sci. Biotechnol. 29(5): 667–674.
Kitahata, S., Murakami, H. and Okada, S., 1989, Purification and some properties of amylomaltase from Escherichia coli IFO 3806, Agric.Biol. Chem.53(10):2653-2659.