Induction of Morphological Characteristic Differentiation of Thai Native Asiatic Pennywort (Centella asiatica L.) by Acute Gamma Irradiation
Main Article Content
Abstract
Background and Objectives: Asiatic pennywort is an herbaceous perennial plant that grows in tropical and subtropical humid regions around the world. It has been recognized as one of the five Thailand Champion Herbal Product (TCHP). The main substances in Asiatic pennywort include asiaticoside, asiatic acid, madecassoside, and madecassic acid. This study aimed to induce mutation in Thai native Asiatic pennywort species using acute gamma radiation and to investigate the morphological variability of M1V2 mutated for use as a germplasm in the Asiatic pennywort breeding program.
Methodology: Six levels of acute gamma radiation were applied to Asiatic pennywort seeds following a completely randomized design. The irradiated seeds were then planted to investigate the distribution of morphological characteristics in the native Asiatic pennywort species after exposure to radiation (M1V2 model). The study aimed to estimate variance at 95% confidence interval and the Pearson correlation coefficient of growth traits.
Main Results: Radiation dose causing the germination of Asiatic pennywort seeds to decrease
to the median lethal dose (LD50) is 162.51 gray. The amount of gamma radiation can alter the morphology of Asiatic pennywort. Increasing dose of gamma radiation induced reduction in plant height, petiole length, and stolon length, but an increase in the number of leaves, leaf width, leaf length and stolon number during 90 days after transplanted. Additionally, the morphological distribution of Asiatic pennywort M1V2 generation during the 60 days after
transplantation showed relatively high morphological variability in all characteristics. The correlation coefficient of morphological characteristics of Asiatic pennywort M1V2 generation during the 60 days after transplantation revealed that plant height was highly positively correlated with leaf length (0.487), leaf width (0.415), and petiole length (0.708).
Conclusions: Acute gamma radiation appears to be triggering morphological variability in native Asiatic pennywort seeds. Additionally, when clear classification is challenging, a combination of quantitative data could be employed to select mutant species. The induction method using acute gamma radiation can be utilized to generate diversity for breeding Asiatic pennywort.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
AAT Bioquest. 2023. Quest Graph™ LD50 calculator. Available Source: https://www.aatbio.com/tools/ld50–calculator, January 29, 2023.
Abdelnour-Esquivel, A., J. Perez, M. Rojas, W. Vargas and A. Gatica-Arias. 2020. Use of gamma radiation to induce mutations in rice (Oryza sativa L.) and the selection of lines with tolerance to salinity and drought. In Vitro Cell. Dev. Biol. Plant. 56: 88–97. https://doi.org/10.1007/s11627-019-10015-5.
Alqahtani, A., J.L. Cho, K.H. Wong, K.M. Li, V. Razmovski–Naumovski and G.Q. Li. 2017. Differentiation of three Centella species in Australia as inferred from morphological characteristics, ISSR molecular fingerprinting and phytochemical composition. Front. Plant Sci. 8: 1980. https://doi.org/10.3389/fpls.2017.01980.
Andrew-Peter-Leon, M.T., S. Ramchander, K.K. Kumar, M. Muthamilarasan and M.A. Pillai. 2021. Assessment of efficacy of mutagenesis of gamma-irradiation in plant height and days to maturity through expression analysis in rice. PLoS ONE 16(1): e0245603. https://doi.org/10.1371/journal.pone.0245603.
Balla, N., T. Taychasinpitak, A. Jala and T. Thanananta. 2017. Effect of gamma irradiation on hybrid ornamental sweet potato (Ipomoea batatas L.) in vitro. Agricultural Sci. J. 48(1): 151–159. (in Thai)
Bioinformatics. 2023. SR plot. Available Source: http://bioinformatics.com.cn/plot_basic_corrplot_corrlation_plot_082_en, January 29, 2023.
Brinkhaus, B., M. Lindner, D. Schuppan and E.G. Hahn. 2000. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella asiatica. Phytomedicine. 7(5): 427–448. https://doi.org/10.1016/s0944-7113(00)80065-3.
Chachai, N., B. Pensuriya, T. Pinsuntiae, P. Pratubkong, J. Mungngam, P. Nitmee, P. Kaewsri, S. Wongsatchanan, R. Jindajia, P. Triboun and J. Sreesaeng. 2021. Variability of morphological and agronomical characteristics of Centella asiatica in Thailand. Trends Sci. 18(23): 502. https://doi.org/10.48048/tis.2021.502.
Collins, M., R. Knutti, J. Arblaster, J.L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver and M. Wehner. 2013. Long-term climate change: projections, commitments and irreversibility, pp. 1029–1136. In T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA.
Devkota, A., S. Dall’Acqua, S. Comai, G. Innocenti and P.K. Jha. 2010. Centella asiatica (L.) urban from Nepal: Quali–quantitative analysis of samples from several sites, and selection of high terpene containing populations for cultivation. Biochem. Syst. Ecol. 38(1) :12–22. https://doi.org/10.1016/j.bse.2009.12.019.
Eom, H.J., H.Y. Shin, H.J. Park, K.H. Kim, J.H. Kim and K.W. Yu. 2022. Functional components and physiological activity in different parts of Centella asiatica. Korean J. Food Preserv. 29(5): 749–761. https://doi.org/10.11002/kjfp.2022.29.5.749.
Gbolahan, B.W., A.I. Abiola, J. Kamaldin, M.A. Ahmad and M.S. Atanassova. 2016. Accession in Centella asiatica; current understanding and future knowledge. J. Pure Appl. Microbiol. 10(4): 2485–2494. http://dx.doi.org/10.22207/JPAM.10.4.02.
Gohil, K.J., J.A. Patel and A.K. Gajjar. 2010. Pharmacological review on Centella asiatica: a potential herbal cure–all. Indian J. Pharm. Sci. 72(5): 546–556. https://doi.org/10.4103%2F0250-474X.78519.
Gray, N.E., A.A. Magana, P. Lak, K.M. Wright, J. Quinn, J.F. Stevens, C.S. Maier and A. Soumyanath. 2018. Centella asiatica – Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochem. Rev. 17(1): 161–194. https://doi.org/10.1007/s11101-017-9528-y.
Gray, S.B. and S.M. Brady. 2016. Plant developmental responses to climate change. Dev. Biol. 419(1): 64–77. https://doi.org/10.1016/j.ydbio.2016.07.023.
Hase, Y., K. Satoh and S. Kitamura. 2023. Comparative analysis of seed and seedling irradiation with gamma rays and carbon ions for mutation induction in Arabidopsis. Front. Plant Sci. 14: 1149083. https://doi.org/10.3389/fpls.2023.1149083.
Hashim, P. 2011. Centella asiatica in food and beverage applications and its potential antioxidant and neuroprotective effect. Int. Food Res. J. 18(4): 1215–1222.
Hassani, A., A. Azapagic and N. Shokri. 2021. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 12: 6663. https://doi.org/10.1038/s41467-021-26907-3.
Kaensaksiri, T., P. Soontornchainaksaeng, N. Soonthornchareonnon and S. Prathanturarug. 2010. Mutational breeding of Centella asiatica (L.) urban for medicinal purposes. Planta Med. 76: 182. https://doi.org/10.1055/s-0030-1264480.
Kaensaksiri, T., P. Soontornchainaksaeng, N. Soonthornchareonnon and S. Prathanturarug. 2011. In vitro induction of polyploidy in Centella asiatica (L.) Urban. Plant Cell Tiss. Organ. Cult. 107: 187–194. https://doi.org/10.1007/s11240-011-9969-8.
Kiani, D., A. Borzouei, S. Ramezanpour, H. Soltanloo and S. Saadati. 2022. Application of gamma irradiation on morphological, biochemical, and molecular aspects of wheat (Triticum aestivum L.) under different seed moisture contents. Sci. Rep. 12: 11082. https://doi.org/10.1038/s41598-022-14949-6.
Majeed, A., Z. Muhammad, R. Ullah and H. Ali. 2018. Gamma irradiation I: effect on germination and general growth characteristics of plants–a review. Pak. J. Bot. 50(6): 2449–2453.
Moghaddam, S.S., H. Jaafar, R. Ibrahim, A. Rahmat, M.A. Aziz and E. Philip. 2011. Effects of acute gamma irradiation on physiological traits and flavonoid accumulation of Centella asiatica. Molecules. 16(6): 4994–5007. https://doi.org/10.3390/molecules16064994.
Mumtazah, H.M., Supriyono, Y. Widyastuti and A. Yunus. 2020. The diversity of leaves and asiaticoside content on three accessions of Centella asiatica with the addition of chicken manure fertilizer. Biodiversitas. 21(3): 1035–1040. https://doi.org/10.13057/biodiv/d210325.
Nav, S.N., S.N. Ebrahimib, A. Sonbolic and M.H. Mirjalili. 2021. Variability, association and path analysis of centellosides and agro-morphological characteristics in Iranian Centella asiatica (L.) Urban ecotypes. S. Afr. J. Bot. 139: 254–266. https://doi.org/10.1016/j.sajb.2021.03.006.
Nawanopparatsakul, S., P. Phuagphong and N. Kitcharoen. 2012. Effect of citrus extractions on plant growth inhibition by lettuce (Lactuca sativa L) seed germination and seedling length bioassay. J. Pharm. Biomed. Sci. 22(22): 25.
Ogunka-Nnoka, C.U., F.U. Igwe, J. Agwu, O.J. Peter and P.H. Wolugbom. 2020. Nutrient and phytochemical composition of Centella asiatica leaves. Med. Aromat. Plants (Los Angeles). 9(2): 346. https://doi.org/10.35248/2167-0412.20.9.346.
Padmalatha, K. and M.N.V. Prasad. 2008. Genetic diversity in Centella asiatica (L.) Urb., a memory–enhancing neutraceutical herb, using RAPD markers. Med. Aromat. Plant Sci. Biotechnol. 2(2): 90–95.
Pant, P., S. Pandey and S. Dall’Acqua. 2021. The influence of environmental conditions on secondary metabolites in medicinal plants: a literature review. Chem. Biodivers. 18(11): e2100345. https://doi.org/10.1002/cbdv.202100345.
Prasad, A., S.S. Dhawan, A.K. Mathur, O. Prakash, M.M. Gupta, R.K. Verma, R.K. Lal and A. Mathur. 2014. Morphological, chemical and molecular characterization of Centella asiatica germplasms for commercial cultivation in the Indo-Gangetic plains. Nat. Prod. Commun. 9(6): 779–784.
Roostika, I., S. Rahayu and N. Bermawie. 2022. The application of gamma ray irradiation to increase triterpenoid compounds in embryogenic calli of Centella asiatica L. Urban. AIP Conf. Proc. 2462(1): 050001. https://doi.org/10.1063/5.0076402.
Sawatdiwong, K., K. Chusreeaeom and S. Wongchaochant. 2020. Effect of gamma radiation on in vitro growth and morphological changes of Anoectochilus koshunensis Hayata. In Proc. the 58th Kasetsart University Annual Conference, February 5–7, 2020. p. 260. (in Thai)
Singh, B. and R.P. Rastogi. 1969. A reinvestigation of the triterpenes of Centella asiatica. Phytochemistry 8(5): 917–921. https://doi.org/10.1016/S0031-9422(00)85884-7.
Srithongkul, J., S. Kanlayanarat, V. Srilaong, A. Uthairatanakij and P. Chalermglin. 2011. Effects of light intensity on growth and accumulation of triterpenoids in three accessions of Asiatic pennywort (Centella asiatica (L.) Urb.). J. Food Agric. Environ. 9(1): 360–363.
Tan, C., X.Q. Zhang, Y. Wang, D. Wu, M.I. Bellgard, Y. Xu, X. Shu, G. Zhou and C. Li. 2019. Characterization of genome-wide variations induced by gamma-ray radiation in barley using RNA–Seq. BMC Genomics. 20: 783. https://doi.org/10.1186/s12864-019-6182-3.
Tanimlak, S., T. Taychasinpitak, P. Sukprasert, P. Jompuk and A. Piriyaphattarakit. 2018. Mutation breeding of gomphrena hybrid by gamma irradiation. TJST. 7(1): 48–57. https://doi.org/10.14456/tjst.2018.6. (in Thai)
Willeit, M., A. Ganopolski, R. Calov and V. Brovkin. 2019. Mid–Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal. Sci. Adv. 5(4): eaav7337. https://doi.org/10.1126/sciadv.aav7337.
WHO (World Health Organization). 2010. Ageing: Global Population. Available Source: https://www.who.int/news–room/questions–and–answers/item/population–ageing, January 28,2023.
Yasurin, P., M. Sriariyanun and T. Phusantisampan. 2016. Review: The bioavailability activity of Centella asiatica. KMUTNB Int. J. Appl. Sci. Tech. 9(1): 1–9. http://dx.doi.org/10.14416/j.ijast.2015.11.001.
Zhang, X.G., T. Han, Z.G. He, Q.Y. Zhang, L. Zhang, K. Rahman and L.P. Qin. 2012. Genetic diversity of Centella asiatica in China analyzed by inter–simple sequence repeat (ISSR) markers: combination analysis with chemical diversity. J. Nat. Med. 66: 241–247. https://doi.org/10.1007/s11418-011-0572-4.