Species and Percentage Parasitism of Spodoptera frugiperda (Lep.: Noctuidae) in Corn Fields and Longevity of Chelonus insularis (Hym.: Braconidae)

Main Article Content

Jutamas Huadprasit
Benjakhun Sangtongpraow

Abstract

Background and Objectives: The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is known for causing extensive damage to corn crops and rapidly spreading in Thailand. One potential method of control is through natural enemy insects. The objectives of this research were to study the species and percentage of parasitism by FAW parasitoids and to determine the longevity of Chelonus insularis Cresson adults.
Methodology: Larvae in the first through sixth instars and egg masses of FAW were randomly collected from corn fields in five provinces and subsequently reared in the laboratory. C. insularis adults were reared using three types of food (50% honey solution, water, and no diet). The experimental design followed a completely randomized design (CRD).
Main Results: The results revealed three species of parasitoids that attacked the larval and egg stages of FAW in corn fields, as follows: C. insularis, Charops bicolor (Szepligeti), Cotesia sp., and one species of tachinid fly. The percentage parasitism of C. insularis in FAW larvae collected from the fields was the highest, ranging from 6.25% to 66.15% of all parasitoids. When collecting FAW eggs in the fields, the number of eggs per mass ranged from 61.52 to 304.38 eggs/mass The hatching rate of FAW eggs ranged from 20.54% to 63.66%, and 10.06% to 40.09% of the FAW larvae developed into adults. The percentage parasitism of C. insularis ranged from 3.94% to 22.67%. Different diets had a significant effect on the longevity of C. insularis (P < 0.05). The honey solution provided the longest longevity, with males living for 16.21 ± 3.28 days and females for 19.86 ± 3.11 days.
Conclusions: C. insularis is a potential parasitoid for mass-rearing exploration and for controlling FAW in the fields.

Article Details

Section
Research article

References

Akutse, K.S., J.W. Kimemia, S. Ekesi, F.M. Khamis, O.L. Ombura and S. Subramanian. 2019. Ovicidal effects of entomopathogenic fungal isolates on the invasive fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Appl. Entomol. 143(6): 626–634. https://doi.org/10.1111/jen.12634.

Barrantes, M.E. and M.K. Castelo. 2014. Host specificity in the host-seeking larva of the dipteran parasitoid Mallophora ruficauda and the influence of age on parasitism decisions. Bull. Entomol. Res. 104(3): 295–306. https://doi.org/10.1017/s0007485314000029.

Caccia, M.G., E.D. Valle, M.E. Doucet and P. Lax. 2014. Susceptibility of Spodoptera frugiperda and Helicoverpa gelotopoeon (Lepidoptera: Noctuidae) to the entomopathogenic nematode Steinernema diaprepesi (Rhabditida: Steinernematidae) under laboratory conditions. Chilean J. Agric. Res. 74(1): 123–126. http://doi.org/10.4067/S0718-58392014000100019.

Capinera, J.L. 2017. Fall Armyworm, Spodoptera frugiperda (J.E. Smith) (Insecta: Lepidoptera: Noctuidae). Available Source: https://edis.ifas.ufl.edu/in255, September 25, 2019.

Department of Agriculture Extension. 2019. Data of Maize Crop. Ministry of Agriculture and Cooperatives, Bangkok, Thailand. (in Thai)

Department of Agriculture. 2019. Protections Fall armyworm Spodoptera frugiperda (J.E. Smith). Available Source: https://www.doa.go.th/plprotect/?page_id=3090, October 24, 2020. (in Thai)

Department of Foreign Trade. 2021. Maize (Corn) Export Statistics. Available Source: https://www.dft.go.th/th-th/DFT-Service/Service-Data-Information/Statistic-Import-Export/Detaildft-service-data-statistic/ArticleId/20692/20692, October 24, 2021. (in Thai)

du Plessos, J. 2003. Maize Production. Available Source: https://www.arc.agric.za/arc-gci/Fact%20Sheets%20Library/Maize%20Production.pdf, September 25, 2019.

Earl, S.L. 1983. Competitive Interaction between Chelonus insularis Cresson and Telenomus remus, Two Parasitoids of Spodoptera exigua. MS Thesis, The University of Arizona, Arizona.

Early, R., P. González-Moreno, S.T. Murphy and R. Day. 2018. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota. 40: 25–50. https://doi.org/10.3897/neobiota.40.28165.

Fernandes, F.L., L. Bacci and M.S. Fernandes. 2010. Impact and selectivity of insecticides to predators and parasitoids. EntomoBrasilis. 3(1): 1–10. https://doi.org/10.12741/ebrasilis.v3i1.52.

Firake, D.M. and G.T. Behere. 2020. Bioecological attributes and physiological indices of invasive fall armyworm, Spodoptera frugiperda (J.E. Smith) infesting ginger (Zingiber officinale Roscoe) plants in India. Crop Prot. 137: 105233. https://doi.org/10.1016/j.cropro.2020.105233.

Heil, M. 2011. Nectar: generation, regulation and ecological functions. Trends Plant Sci. 16(4): 191–200. https://doi.org/10.1016/j.tplants.2011.01.003.

Hentz, M.G., P.C. Ellsworth, S.E. Naranjo and T.F. Watson. 1998. Development, longevity and fecundity of Chelonus sp. nr. curvimaculatus (Hymenoptera: Braconidae), an egg-larval parasitoid of pink bollworm (Lepidoptera: Gelechiidae). Environ. Entomol. 27(2): 443–449. https://doi.org/10.1093/ee/27.2.443.

Huesing, J.E. and P. Chinwada. 2018. Integrated pest management of fall armyworm in Africa: an Introduction, pp. 1–10. In B.M. Prasanna, J.E. Huesing, R. Eddy and V.M. Peschke, eds. Fall Armyworm in Africa: A Guide for Integrated Pest Management. CIMMYT Headquarters, Mexico.

Kittel, R.N., A.D. Austin and S. Klopfstein. 2016. Molecular and morphological phylogenetics of chelonine parasitoid wasps (Hymenoptera: Braconidae), with a critical assessment of divergence time estimations. Mol. Phylogenet. Evol. 101: 224–241. https://doi.org/10.1016/j.ympev.2016.05.016.

Molina-Ochoa, J., J.E. Carpenter, E.A Heinrichs and J.E. Foster. 2003. Parasitoids and parasites of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas and Caribbean Basin: an inventory. Fla. Entomol. 86(3): 254–289. https://doi.org/10.1653/0015-4040(2003)086[0254:PAPOSF]2.0.CO;2.

Molina-Ochoa, J., J.J. Hamm, R. Lezama-Gutiérrez, M. Lopez-Edwards, M. Gonzalez-Ramirez and A. Pescador-Rubio. 2001. A survey of fall armyworm (Lepidoptera: Noctuidae) parasitoids in the Mexican States of Michoacán, Colima, Jalisco and Tamaulipas. Fla. Entomol. 84(1): 31–36. https://doi.org/10.2307/3496659.

Office of Agricultural Economics. 2021. Maize (Corn): the Results of Economic Forecast form the Outbreak of “Fall armywrom” Available Source: https://www.nabc.go.th/file/corn_040521.pdf, October 24, 2020. (in Thai)

Oliveira, N.C., A.K. Suzukawa, C.B. Pereira, H.V. Santos, A. Hanel, F.A. Albuquerque and C.A. Scapim. 2018. Popcorn genotypes resistance to fall armyworm. Cienc. Rural. 48(2): e20170378. https://doi.org/10.1590/0103-8478cr20170378.

Omkar. 2016. Ecofriendly Pest Management for Food Security. Academic Press, India. 750 pp.

Otim, M.H., S.A. Aropet, M. Opio, D. Kanyesigye, H.N. Opolot and W.T. Tey. 2021. Parasitoid distribution and parasitism of the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) in different maize producing regions of Uganda. Insects. 12(2): 121. https://doi.org/10.3390/insects12020121.

Plant Protection Research and Development Office. 2019. Available Source: http://www.doa.go.th/plprotect/?p=3028, November 20, 2020. (in Thai)

Rezende, M.A.A., I. Cruz and T.M.C. Della Lucia. 1995. Biological aspects of the parasitoid Chelonus insularis (Cresson) (Hymenoptera, Braconidae) reared on eggs of Spodoptera frugiperda (Smith) (Lepidoptera, Noctuidae). Rev. Bras. Zool. 12(4): 779–784. https://doi.org/10.1590/S0101-81751995000400007.

Roque-Romero, L., J. Cisneros, J.C. Rojas, F.R. Ortiz-Carreon and E.A. Malo. 2020. Attraction of Chelonus insularis to host and host habitat volatiles during the search of Spodoptera frugiperda eggs. Biol. Control. 140: 104100. https://doi.org/10.1016/j.biocontrol.2019.104100.

Ruiz-Najera, R.E., J. Molina-Ochoa, J.E. Carpenter, J.A. Espinosa-Moreno, J.A. Ruíz-Nájera, R. Lezama-Gutiérrez and J.E. Foster. 2007. Survey for hymenopteran and dipteran parasitoids of the fall armyworm (Lepidoptera: Noctuidae) in Chiapas, Mexico. J. Agric. Urban Entomol. 24(1): 35–42. https://doi.org/10.3954/1523-5475-24.1.35.

Samkova, A., J. Hadrava, J. Skuhrovec and P. Jansta. 2019. Host population density and presence of predators as key factors influencing the number of gregarious parasitoid Anaphes flavipes offspring. Sci. Rep. 9: 6081. https://doi.org/10.1038/s41598-019-42503-4.

Sielezniew, M., A. Kostro-Ambroziak and A. Korosi. 2020. Sexual differences in age-dependent survival and life span of adults in a natural butterfly population. Sci. Rep. 10(1): 10394. https://doi.org/10.1038/s41598-020-66922-w.

Tafere, D.A. 2021. Chemical composition and uses of honey: a review. J. Food Sci. Nutr. Res. 4(3): 194–201. http://doi.org/10.26502/jfsnr.2642-11000072.

Togola, A., S. Meseka, A. Menkir, B. Badu-Apraku, O. Boukar, M. Tamò and R. Djouaka. 2018. Measurement of pesticide residues from chemical control of the invasive Spodoptera frugiperda (Lepidoptera: Noctuidae) in a maize experimental field in Mokwa, Nigeria. Int. J. Environ. Res. Public Health. 15(5): 849. https://doi.org/10.3390/ijerph15050849.

Wang, X., E.M. Aparicio, J.J. Duan, J. Gould and K.A. Hoelmer. 2020. Optimizing parasitoid and host densities for efficient rearing of Ontsira mellipes (Hymenoptera: Braconidae) on Asian longhorned beetle (Coleoptera: Cerambycidae). Environ. Entomol. 49(5): 1041–1048. https://doi.org/10.1093/ee/nvaa086.

Wang, Z., Y. Liu, M. Shi, J. Huang and X. Chen. 2019. Parasitoid wasps as effective biological control agents. J. Integr. Agric. 18(4): 705–715. https://doi.org/10.1016/S2095-3119(18)62078-7.

Yesuf, N.S. 2016. Host Seeking Behaviors of Insect Parasitoids and Their Importance in Insect Pest Management. Hawassa University, Hawassa, Ethiopia.