ผลเฉลยของสมการไดโอแฟนไทน์ (p-1)^x+2.p^y=z^2 และ (p-1)^x-2.p^y=z^2

Main Article Content

สุธน ตาดี

บทคัดย่อ

ให้ gif.latex?p เป็นจำนวนเฉพาะ และ gif.latex?x,y,z เป็นจำนวนเต็มที่ไม่เป็นลบ จะได้ว่า สมการไดโอแฟนไทน์ gif.latex?\left&space;(&space;p-1&space;\right&space;)^{x}+2\cdot&space;p^{y}=z^{2} มีผลเฉลยจำนวนเต็มที่ไม่เป็นลบ ดังนี้ gif.latex?\left&space;(&space;p,x,y,z&space;\right&space;)=\left&space;(&space;3,1,0,2&space;\right&space;) และ gif.latex?\left&space;(&space;p,x,y,z&space;\right&space;)=\left&space;(&space;2,t,2,3&space;\right&space;) เมื่อ gif.latex?t เป็นจำนวนเต็มที่ไม่เป็นลบ และสมการไดโอแฟนไทน์ gif.latex?\left&space;(&space;p-1&space;\right&space;)^{x}-2\cdot&space;p^{y}=z^{2} มีผลเฉลยจำนวนเต็มที่ไม่เป็นลบ ดังนี้ gif.latex?\left&space;(&space;p,x,y,z&space;\right&space;)=\left&space;(&space;3,1,0,0\right&space;) และ gif.latex?\left&space;(&space;p,x,y,z&space;\right&space;)=\left&space;(&space;p,1,0,\sqrt{p-3}&space;\right&space;) เมื่อgif.latex?p\equiv&space;7\left&space;(&space;mod12&space;\right&space;)  และ gif.latex?\sqrt{p-3} เป็นจำนวนเต็ม

Article Details

รูปแบบการอ้างอิง
ตาดี ส. (2024). ผลเฉลยของสมการไดโอแฟนไทน์ (p-1)^x+2.p^y=z^2 และ (p-1)^x-2.p^y=z^2. วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏเชียงราย, 3(2), 15–22. สืบค้น จาก https://li01.tci-thaijo.org/index.php/jstcrru/article/view/263842
ประเภทบทความ
บทความวิจัย

เอกสารอ้างอิง

Laipaporn, K., Wananiyakul, S., & Khachorncharoenkul, P. (2019). On the Diophantine equation 3^x+p5^y=z^2. Walailak Journal of Science and Technology, 16(9), 647-653.

Thongnak, S., Chuayjan, W., & Kaewong, T. (2022). On the Diophantine equation 11∙3^x+11^y=z^2 where x,y and z are non-negative integers. Annals of Pure and Applied Mathematics, 25(1), 51-54.

Thongnak, S., Chuayjan, W., & Kaewong, T. (2022). On the exponential Diophantine equation 5^x-2∙3^y=z^2. Annals of Pure and Applied Mathematics, 25(2), 109-112.

Tangjai, W., Chaeoueng, S., & Phumchaichot, N. (2022). On the Diophantine equation 7^x+5∙p^y=z^2 where p≡1,2,4 (mod 7). International Journal of Mathematics and Computer Science, 17(4), 1483-1489.

Tadee, S. (2023). On the Diophantine equations (n+2)^x-2∙n^y=z^2 and (n+2)^x+2∙n^y=z^2. Annals of Pure and Applied Mathematics, 27(1), 19-22.

Porto, A., Buosi, M., & Ferreira, G. (2023). On the exponential Diophantine equation p∙3^x+p^y=z^2 with p a prime number. Annals of Pure and Applied Mathematics, 28(1), 13-19.

Tadee, S. (2023). Solutions of the Diophantine equation p^x+pq^y=z^2 where p and q are distinct prime numbers. Journal of Science and Technology, Ubon Ratchathani University, 25(1), 57-61. (in Thai)

Burton, D.M. (2010). Elementary Number Theory. 7th ed., New York; McGraw-Hill.

Mihăilescu, P. (2004). Primary cyclotomic units and a proof of Catalan’s conjecture. Journal für die Reine und Angewandte Mathematik, 572, 167-195.