On the Diophantine Equation 3^x+n^y=z^2, where 𝒏≡𝟐 (𝐦𝐨𝐝 𝟑)
Main Article Content
Abstract
In this research, we investigated all solutions of the Diophantine equation , where
are non-negative integers and
is a positive integer such that
, by using Mihăilescu’s Theorem and Leu and Li’s Theorem. The research findings revealed that the Diophantine equation has all solutions, which are
.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Journal of TCI is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
References
Rabago, J.F.T. (2013). On two Diophantine equations 3^x+19^y=z^2 and 3^x+91^y=z^2. International Journal of Mathematics and Scientific Computing, 3(1), 28-29.
Sroysang, B. (2014). More on the Diophantine equation 3^x+85^y=z^2. International Journal of Pure and Applied Mathematics, 91(1), 131-134.
Sroysang, B. (2014). On the Diophantine equation 3^x+45^y=z^2. International Journal of Pure and Applied Mathematics, 91(2), 269-272.
Saranya, P., & Janaki, G. (2017). On the exponential Diophantine equation 36^x+3^y=z^2. International Research Journal of Engineering and Technology (IRJET), 4(11), 1042-1044.
Asthana, S., & Singh, M.M. (2017). On the Diophantine equation 3^x+13^y=z^2. International Journal of Pure and Applied Mathematics, 114(2), 301-304.
Rao, C.G. (2018). On the Diophantine equation 3^x+7^y=z^2. EPRA International Journal of Research and Development (IJRD), 3(6), 93-95.
Burshtein, N. (2019). On solutions to the Diophantine equation 3^x+q^y=z^2. Annals of Pure and Applied Mathematics, 19(2), 169-173.
Asthana, S., & Singh, M.M. (2020). On the Diophantine equation 3^x+117^y=z^2. GANITA, 70(2), 43-47.
Sangam, B.R. (2020). On the Diophantine equations 3^x+6^y=z^2 and 5^x+8^y=z^2. Annals of Pure and Applied Mathematics, 22(1), 7-11.
Paisal, K., Chayapham, P., & Lertlop, W. (2024). Solutions of the Diophantine equations 3^x+97^y=z^2 and 11^x+89^y=z^2. The Golden Teak: Science and Technology Journal (GTSJ.), 11(2), 13-17. (in Thai)
Biswas, D. (2025). A discussion on the solution(s) of the Diophantine equation 3^x+15^y=z^2. Journal of Scientific Research, 17(1), 129-132.
Mihăilescu, P. (2004). Primary cyclotomic units and a proof of Catalan’s conjecture. Journal für die Reine und Angewandte Mathematik, 572, 167-195.
Leu, M., & Li, G. (2003). The Diophantine equation 2x^2+1=3^n. Proceedings of the American Mathematical Society, 131(12), 3643-3645.
Sroysang, B. (2012). On the Diophantine equation 3^x+5^y=z^2. International Journal of Pure and Applied Mathematics, 81(4), 605-608.
Sroysang, B. (2013). On the Diophantine equation 3^x+17^y=z^2. International Journal of Pure and Applied Mathematics, 89(1), 111-114.
Sroysang, B. (2013). More on the Diophantine equation 2^x+3^y=z^2. International Journal of Pure and Applied Mathematics, 84(2), 133-137.
Tangjai, W., & Chubthaisong, C. (2021). On the Diophantine equation 3^x+p^y=z^2 where p≡2 (mod 3). WSEAS Transactions on Mathematics, 20, 283-287.
Biswas, D. (2022). Does the solution to the non-linear Diophantine equation 3^x+35^y=z^2 exist? Journal of Scientific Research, 14(3), 861-865.
Srimud, K., & Tadee, S. (2023). On the Diophantine equation 3^x+b^y=z^2. International Journal of Mathematics and Computer Science, 18(1), 137-142.
Malavika, N., & Venkatraman, R. (2024). On the exponential Diophantine equation 3^x+121^y=z^2. International Journal of Mathematics and Computer Science, 19(3), 917-920.