On the Diophantine Equations p^x+(p+30)^y=z^2
Main Article Content
Abstract
This research investigates the non-negative integer solutions to the Diophantine equation , specifically for the case where
is not a multiple of
. Under this condition, we prove that the equation has a unique non-negative integer solution at
. The proof is based on the analysis of parity, divisibility properties, modular arithmetic, and Mihăilescu's Theorem. The result indicates that imposing specific conditions on variables can lead to a definite solution for a complex Diophantine equation, suggesting a potential approach for studying the equation in more general forms.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Journal of TCI is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
References
Acu, D. (2007). On ADiophantine Equation 2^x+5^y=z^2. General Mathematics, 15(4), 145–148.
Sroysang, B. (2012). On the Diophantine equation 3^x+5^y=z^2. International Journal of Pure and Applied Mathematics, 81(4), 605–608.
Sroysang, B. (2013). More on The Diophantine Equation 2^x+3^y=z^2. International Journal of Pure and Applied Mathematics, 84(2), 133–137.
Rao, C. G. (2018). On the Diophantine equation 3^x+7^y=z^2. EPRA International Journal of Research and Development (IJRD), 3(6), 93–95.
Asthana, S., & Singh, M. M. (2017). On the Diophantine equation 3^x+13^y=z^2. International Journal of Mathematics Trends and Technology, 45(2), 126–130.
Burshtein, N. (2018). All the solutions of the Diophantine equation p^x+(p+4)^y=z^2 when p,(p+4) are primes and x+y=2,3,4. Annals of Pure and Applied Mathematics, 16(1), 241–244.
Dokchan, R., & Pakapongpun, A. (2021). On the Diophantine equation p^x+(p+20)^y=z^2. Science, Mathematics and Technology Journal, 2(1), 11–16.
Mihilescu, P. (2004). Primary cycolotomic units and a proof of Catalan’s conjecture. Journal für die reine und angewandte Mathematik, 2004(572), 167-195.
Catalan, E. (1844). Note extraite d’une lettre adressée à l’éditeur par Mr. E. Catalan, répétiteur à l’école polytechnique de Paris. Journal für die reine und angewandte Mathematik, 27, 192.