On the Diophantine Equations p^x+(p+30)^y=z^2

Main Article Content

Krerkchai Jaimano
Nattanicha Duanthip
Nitima Phrommarat
Thanwarat Butsan

Abstract

This research investigates the non-negative integer solutions to the Diophantine equation equation, specifically for the case where equation is not a multiple of equation. Under this condition, we prove that the equation has a unique non-negative integer solution at equation. The proof is based on the analysis of parity, divisibility properties, modular arithmetic, and Mihăilescu's Theorem. The result indicates that imposing specific conditions on variables can lead to a definite solution for a complex Diophantine equation, suggesting a potential approach for studying the equation in more general forms.

Article Details

How to Cite
Jaimano, K., Duanthip, N., Phrommarat, N., & Butsan, T. (2025). On the Diophantine Equations p^x+(p+30)^y=z^2 . Journal of Science and Technology CRRU, 4(2), 21–25. retrieved from https://li01.tci-thaijo.org/index.php/jstcrru/article/view/268211
Section
Research article

References

Acu, D. (2007). On ADiophantine Equation 2^x+5^y=z^2. General Mathematics, 15(4), 145–148.

Sroysang, B. (2012). On the Diophantine equation 3^x+5^y=z^2. International Journal of Pure and Applied Mathematics, 81(4), 605–608.

Sroysang, B. (2013). More on The Diophantine Equation 2^x+3^y=z^2. International Journal of Pure and Applied Mathematics, 84(2), 133–137.

Rao, C. G. (2018). On the Diophantine equation 3^x+7^y=z^2. EPRA International Journal of Research and Development (IJRD), 3(6), 93–95.

Asthana, S., & Singh, M. M. (2017). On the Diophantine equation 3^x+13^y=z^2. International Journal of Mathematics Trends and Technology, 45(2), 126–130.

Burshtein, N. (2018). All the solutions of the Diophantine equation p^x+(p+4)^y=z^2 when p,(p+4) are primes and x+y=2,3,4. Annals of Pure and Applied Mathematics, 16(1), 241–244.

Dokchan, R., & Pakapongpun, A. (2021). On the Diophantine equation p^x+(p+20)^y=z^2. Science, Mathematics and Technology Journal, 2(1), 11–16.

Mihilescu, P. (2004). Primary cycolotomic units and a proof of Catalan’s conjecture. Journal für die reine und angewandte Mathematik, 2004(572), 167-195.

Catalan, E. (1844). Note extraite d’une lettre adressée à l’éditeur par Mr. E. Catalan, répétiteur à l’école polytechnique de Paris. Journal für die reine und angewandte Mathematik, 27, 192.