Effects of paclobutrazol on vegetative growth and tuber yield of sweet potato (Ipomoea batatas)

Main Article Content

สุชาดา บุญเลิศนิรันดร์
ละอองศรี ศิริเกษร
กิตติ บุญเลิศนิรันดร์

Abstract

          Sweet potato is a tuber crop that accumulates food in the tuber. Excessive vegetative growth negatively affects food partitioning from the shoot to the root resulted in tuber yield reduction. The objectives of this work were to study effects of paclobutrazol on vegetative growth and tuber yield of sweet potato. The experimental design was arranged in randomized complete block design comprised of 4 rates of paclobutrazol; 0, 50, 100 and 200 mg/l and conducted in the field plots of Rajamangala University of Technology Suvarnabhumi during March to June 2017. The results were found that application of all paclobutrazol rates did not significantly affect vine length and leaf area of sweet potato when compared to the control (0 mg/l) but significantly affected tuber yield and some agronomic characters of sweet potato. Application of paclobutrazol at the rate of 200 mg/l showed the best results on leaf greenness, chlorophyll fluorescence, tuber numbers and tuber yield (tuber weight), whereas application at the rate of 50 and 100 mg/l were not significantly different from the control. From this present work, we concluded that application of paclobutrazol at the rate of 200 mg/l did not influence vegetative growth but it contributed to the increase of tuber yield.

Article Details

How to Cite
บุญเลิศนิรันดร์ ส., ศิริเกษร ล., & บุญเลิศนิรันดร์ ก. (2018). Effects of paclobutrazol on vegetative growth and tuber yield of sweet potato (Ipomoea batatas). RMUTSB ACADEMIC JOURNAL, 6(2), 114–123. Retrieved from https://li01.tci-thaijo.org/index.php/rmutsb-sci/article/view/106525
Section
Research Article

References

ธนวดี พรหมจันทร์, กันยารัตน์ หรัถยา, พรนภา รุ่งสว่าง, อาริสา ทับทิม, และพิมพ์ใจ มีตุ้ม. (2559). ผลของความเข้มข้นและวิธีการให้สารละลายพาโคลบิวทราโซลต่อการเจริญเติบโตของต้นดาวเรืองพันธุ์อเมริกัน. วารสารพืชศาสตร์สงขลานครินทร์, 3(2), 10-18.

นิติพัฒน์ พัฒนฉัตรชัย. (2557). พาโคลบิวทราโซล: ผลต่อการเติบโตของทรงพุ่มและปริมาณคลอโรฟิลล์ของชวนชมพันธุ์ฮอลแลนด์. วารสารแก่นเกษตร, 42(1), 39-46

พีรเดช ทองอาไพ. (2529). ฮอร์โมนพืชและสารสังเคราะห์ แนวทางการใช้ประโยชน์ในประเทศไทย. กรุงเทพฯ: ไดนามิคการพิมพ์.

Armstrong, E., & Nicol, H. (1991). Reducing height and lodging in rapeseed with growth regulators. Anim. Prod. Sci., 31, 245-250.

Arzani, K., & Roosta, H. R. (2004). Effects of paclobutrazol on vegetative and reproductive growth and leaf mineral content of mature apricot (Prunus armeniaca L.) trees. J. Agric. Sci. Technol., 6, 43-55.

Baninasab, B., & Shahgholi, M. (2012). Effect of paclobutrazol on vegetative growth, yield and fruit quality of ‘Keshmesh Bovanat’ grape. Acta Hortic, 931, 449-452.

Elanchezhian, R., Haris, A. A., Kumar, S., & Singh, S. S. (2015). Positive impact of paclobutrazol on gas exchange, chlorophyll fluorescence and yield parameters under submergence stress in rice. Ind. J. Plant Physiol., 20, 111-115.

Gardner, R., & Bertling, I. (2005). Effect of winter chilling and paclobutrazol on floral bud production in Eucalyptus nitens. South African Journal of Botany, 71, 238-249.

Huang, W. D., Shen, T., Han, Z. H., & Liu, S. (1995). Influence of paclobutrazol on photo-synthesis rate and dry matter partitioning in the apple tree. J. Plant Nutr., 18, 901-910.

Ishiguro, K., & Yoshimoto, M. (2005). Content of the eye-protective nutrient lutein in sweet potato leaves. In Concise Papers of the Second International Symposium on Sweet Potato and Cassava (pp. 213-214). Kuala Lumpur, Malaysia.

Kays, S. J. (1985). The Physiology of yield in sweet potato. In J. C. Bouwkamp (Ed.), Sweet potato products: A natural resource for the tropics (pp. 79-132). Boca Raton: CRC Press.

Khan, M. (2009). Sterol biosynthesis inhibition by padobutrazol induces greater aluminum (Al) sensitivity in AI-tolerant rice. Am. J. Plant Physiol., 4, 89-99.

Khalil, I. A., & Rahman, H. (1995). Effect of paclobutrazol on growth, chloroplast pigments and sterol biosynthesis of maize (Zea mays L.). Plant Science, 105, 15-21.

Khunpona, B., Cha-umb, S., Faiyuec, B., Uthaibutraa, J., & Saengnila, K. (2017). Influence of paclobutrazol on growth performance, photosynthetic pigments, and antioxidant efficiency of Pathumthani 1 rice seedlings grown under salt stress. Science Asia, 43, 70-81.

Kim, J., Wilson, R. L., Case, J. B., & Binder, B. M. (2012). A comparative study of ethylene growth response kinetics in eudicots and monocots reveals a role for gibberellin in growth inhibition and recovery. Plant Physiol, 160, 1567-1580.

Kuai, J., Yang, Y., Sun, Y., Zhou, G., Zuo, Q., Wua, J., & Ling, X. (2015). Paclobutrazol increases canola seed yield by enhancing lodging and pod shatter resistance in Brassica napus L. Field Crops Research, 180, 10-20.

Kuan-Hung, R. L., Chao-Chia, T., Shih-Ying, H., Long-Fang, O. C., & Hsiao-Feng, L. (2006). Paclobutrazol pre-treatment enhanced flooding tolerance of sweet potato. Journal of Plant Physiology, 163, 750-760.

Lolaei, A., Mobasheri, S., Bemana, R., & Teymori, N. (2013). Role of paclobutrazol on vegetative and sexual growth of plants. Int J. Agri Crop Sci., 5, 958-961.

Oswalt, J. S., Rieff, J. M., Severino, L. S., Auld, D. L., Bednarz, C. W., & Ritchie, G. L. (2014). Plant height and seed yield of castor (Ricinus communis L.) sprayed with growth retardants and harvest aid chemicals. Ind. Crops Prod., 61, 272-277.

Rajala, A., & Peltonen-Sainio, P. (2001). Plant growth regulator effects on spring cereal root and shoot growth. Agron. J., 93, 936-943.

Salomon, E. (1988). Effect of paclobutrazol and gibberellic acid (Ga3) on the root growth and biomass partitioning of citrus leaf cuttings Israel. Journal of Botany, 37,165-17

Scarisbrick, D., Addo-Quaye, A., Daniels, R., & Mahamud, S. (1985). The effect of paclobutrazol on plant height and seed yield of oil-seed rape (Brassica napus L.). J. Agric. Sci., 105, 605-612.

Statistic tool for agricultural research. (2014). Biometrics and breeding informatics, plant breeding, genetics and biotechnology division. International rice research institute.

Sun, H., Mu, T., Xi, L., Zhang, M., & Chen, J. (2014). Sweet potato (Ipomoea batatas L.) leaves as nutritional and functional foods. Food Chemistry, 156, 380-389.

Teto, A. A., Laubscher, C. P., Ndakidemi, P. A., & Matimati, I. (2016). Paclobutrazol retards vegetative growth in hydroponically-cultured Leonotis leonurus (L.) R. Br. Lamiaceae for a multipurpose flowering potted plant. South African Journal of Botany, 106, 67-70.

Tsegaw, T., Hammes, S., & Robbertse, J. (2005). Placlobutazol-induced leaf, stem and root anatomical modifications in potato. Hort Science, 40, 1343-1346.

Yeshitel, T., Robbertse, P. J., & Stassen, P. J. C. (2004). Paclobutrazol suppressed vegetative growth and improved yield as well as fruit quality of ‘Tommy Atkins’ mango (Mangifera indica) in Ethiopia. New Zealand Journal of Crop and Horticultural Science, 32, 281-293.

Zhou, W., & Xi, H. (1993). Effects of mixtalol and paclobutrazol on photosynthesis and yield of rape (Brassica napus). J. Plant Growth Regul, 12, 157-161.