Study of standards and performance of light-emitting diodes based solar simulators

Main Article Content

Napat Watjanatepin
Khanittha Wannakam
Chaiyant Boonmee
Paiboon Kiatsookkanatorn

Abstract

          Solar simulators are critical tools for solar cell research, development, testing, and evaluation. This study examines research on a photovoltaic device's LED (light-emitting diode) solar simulator and incorporates the synthesis's findings into a new body of knowledge. We also makes scholarly observations that could inspire new research questions in the future. The authors examined relevant scholarly articles from international databases. The results revealed that the LED-based solar simulators were classified into two groups: LED solar simulators and halogen-LED solar simulators. A solar simulator with six different LEDs can be used to test solar cells in standard test conditions. However, it was discovered that the light spectrum deviated significantly from the AM 1.5G spectrum. The enhanced light quality is accomplished by limiting the divergence from the standard spectrum using 10-23 emitting diode color mixing techniques, and it may be used to evaluate solar cells in the 350–1100 nm wavelength range. Most of the light-emitting diodes used are high-power type, operating with a voltage of 12-36 V DC, using independent control methods with constant current and voltage sources and controlling the light spectrum from a computer. Designing and building light-emitting diode modules that can be expanded to increase the light test area, automatically adjusting the simulated light intensity and spectrum to change over time, and studying the impact of temperature on the performance of artificial solar simulators are all trends in the construction of solar simulators. This includes researching new techniques to improve the performance of light-emitting diode solar simulators to the highest class in accordance with IEC 60904-9: 202 are all in line with these trends.

Article Details

How to Cite
Watjanatepin, N., Wannakam, K., Boonmee, C., & Kiatsookkanatorn, P. (2023). Study of standards and performance of light-emitting diodes based solar simulators. RMUTSB ACADEMIC JOURNAL, 11(1), 123–148. Retrieved from https://li01.tci-thaijo.org/index.php/rmutsb-sci/article/view/257596
Section
Academic article

References

Al-Ahmad, A. Y., Holdsworth, J., Vaughan, B., Zhou, X., Belcher, W., & Dastoor, P. (2018). LED Configuration for large area solar simulator applications. International Conference on Nanoscience and Nanotechnology. Wollongong, NSW, Australia: University of Wollongong.

Al-Ahmad, A. Y., Holdsworth, J., Vaughan, B., Sharafutdinova, G., Zhou, X., Belcher, W. J., & Dastoor, P. C. (2019). Modular LED arrays for large area solar simulation. Progress in Photovoltaics: Research and Applications, 27(2), 179-189.

Al-Ahmad, A. Y., Clark, D., Holdsworth, J. L., Vaughan, B., Belcher, W. J., & Dastoor, P. C. (2022). An economic LED solar simulator design. IEEE Journal of Photovoltaics, 12(2), 521-525.

ASTM International. (2015). ASTM E927-10. Standard specification for solar simulation for photovoltaic testing. West Conshohocken, PA: ASTM International.

Bazzi, A. M., Klein, Z., Sweeney, M., Kroeger, K. P., Shenoy, P. S., & Krein, P. T. (2012). Solid-state solar simulator. IEEE Transactions on Industry Applications, 48(4), 1195-1202.

Bliss, M., Plyta, F., Betts, T. R., & Gottschalg, R. (2014). LEDs based characterisation of photovoltaic devices. International Conference on Energy Efficient LED Lighting and Solar Photovoltaic Systems Conference. Kanpur, India: Indian Institute of Technology.

Buntoung, S., Pattarapanitchai, S., Laiwarin, P., Boontaveeyuwat, E., & Janjai, S. (2022). Solar ultraviolet radiation for psoriasis treatment at Nakhon Pathom Province. Journal of Applied Research on Science and Technology (JARST), 21(1), 34-43.

da Rosa, A. V., & Ordóñez, J. C. (2022). Chapter 12 - Solar radiation. In A. V. da Rosa, & J. C. Ordóñez, (Eds.), Fundamentals of renewable energy processes (4th ed.) (pp. 519-576). Oxford: Academic Press.

Esen, V., Sağlam, Ş., & Oral, B. (2017). Light sources of solar simulators for photovoltaic devices: A review. Renewable and Sustainable Energy Reviews, 77, 1240-1250.

Esen, V., Saglam, S., Oral, B., & Esen, O. C. (2020). Spectrum measurement of variable irradiance controlled LED-based solar simulator. International Journal of Renewable Energy Research, 10(1), 109-116.

Esen, V., Saglam, S., Oral, B., & Esen, O. C, (2022). Toward class AAA LED large scale solar simulator with active cooling system for PV module tests. IEEE Journal of Photovoltaics, 12(1), 364-371.

Grandi, G., Ienina, A., & Bardhi, M. (2014). Effective low-cost hybrid LED-halogen solar simulator. IEEE Transactions on Industry Applications, 50(5), 3055-3064.

G2V Optics. (2022). Solar simulation technology. Retrieved 5 October 2022, from https://g2voptics.com/solar-simulation/

IEC Standards. (2007). IEC 60904-9 Photovoltaic devices— Part 9: Solar simulator performance requirements. International Electrotechnical Commission.

IEC Standards. (2016). IEC 60904-3 Photovoltaic devices - Part 3: Measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data. Geneva: International Electrotechnical Commission.

JIS. (2011). JIS C 8912:1998/AMENDMENT 2:2011 Solar simulators for crystalline solar cells and modules (Amendment 2). Japanese Standards Association.

Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., & Kim, K.-H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82, 894-900.

Kambezidis, H. D. (2022). 3.02 - The solar resource. In T. M. Letcher (Ed.), Comprehensive renewable energy (2nd Ed.) (pp. 26-117). Amsterdam: Elsevier.

Kohraku, S., & Kurokawa, K. (2003). New methods for solar cells measurement by LED solar simulator. Proceedings of World Conference Photovoltaic Energy Conversion, vol. 2, (pp. 1977-1980). Osaka, Japan: IEEE.

Kohraku, S., & Kurokawa, K. (2006). A fundamental experiment for discrete-wavelength LED solar simulator. Solar Energy Materials and Solar Cells, 90(18-19), 3364-3370.

Kolberg, D., Schubert, F., Lontke, N., Zwigart, A., & Spinner, D. M. (2011). Development of tunable close match LED solar simulator with extended spectral range to UV and IR. Energy Procedia, 8, 100-105.

Krebs, F. C., Sylvester-Hvid, K. O., & Jørgensen, M. (2010). A self-calibrating LED-based solar test platform. Progress in Photovoltaic Research and Application, 19(1), 97-112.

Laaber, D. (2022). Solar simulators. In S. Alexopoulos, & S. A. Kalogirou (Eds.), Solar thermal energy. Encyclopedia of sustainability science and technology series. New York, NY: Springer.

Leary, G., Switzer, G., Kuntz, G., & Kaiser, T. (2016). Comparison of xenon lamp-based and LED-based solar simulators. IEEE 43rd Photovoltaic Specialists Conference (PVSC) (pp. 3062-3067). Portland, OR: IEEE.

Linden, K. J., Neal, W. R., & Serreze, H. B. (2014). In K. P. Streubel, H. Jeon, L.-W. Tu, & M. Strassburg (Eds.), Adjustable spectrum LED solar simulator. Proceedings of SPIE 9003, Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XVIII. SPIE. 9003 (pp. 109-117). San Francisco, California: SPIE OPTO.

López-Fraguas, E., Sánchez-Pena, J. M., & Vergaz, R. (2019). A low-cost LED-based solar simulator. IEEE Transactions on Instrumentation and Measurement, 68(12), 4913-4923.

MKS Newport. (2022). Introduction to solar radiation. Retrieved 5 October 2022, from https://www.newport.com/t/introduction-to-solar-radiation

Nakajima, T., Shinoda, K., & Tsuchiya, T. (2014). Single-LED solar simulator for amorphous Si and dye-sensitized solar cells. RSC Advances, 4, 19165-19171.

Namin, A., Jivacate, C., Chenvidhya, D., Kirtikara, K., & Thongpron, J. (2012). Construction of tungsten halogen, pulsed LED, and combined tungsten halogen-LED solar simulators for solar cell - characterization and electrical parameters determination. International Journal of Photoenergy, 2012, 527820.

Namin, A., Somrak, E., Kartwibul, K., & Thongpron, J. (2013). Current-voltage characterization for solar cell at natural sunlight. RMUTI journal, 6(1), 50-65. (in Thai)

Namin, A., Jivacate, C., Chenvidhya, D., Kirtikara, K., & Thongpron, J. (2013). Determination of solar cell electrical parameters and resistances using color and white LED-based solar simulators with high amplitude pulse input voltages. Renewable Energy, 54, 131-137.

Novičkovas, A., Baguckis, A., Mekys, A., & Tamošiūnas, V. (2015). Compact light-emitting diode-based AAA class solar simulator: Design and application peculiarities. IEEE Journal of Photovoltaics, 5(4), 1137-1142.

Slovenski Standard. (2020). IEC 60904-9 Ed. 3.0 b: 2020 Photovoltaic devices - Part 9: Classification of solar simulator characteristics. Brussels: International Electrotechnical Commission.

Stuckelberger, M., Perruche, B., Bonnet-Eymard, M., Riesen, Y., Despeisse, M., Haug, F.-J., & Ballif, C. (2014). Class AAA LED-based solar simulator for steady-state measurements and light soaking. IEEE Journal of Photovoltaics, 4(5), 1282-1287.

Sun, C., Jin, Z., Song, Y., Chen, Y., Xiong, D., Lan, K., Huang, Y., & Zhang, M. (2022). LED-based solar simulator for terrestrial solar spectra and orientations. Solar Energy, 233, 96-110.

Tavakoli, M., Jahantigh, F., & Zarookian, H. (2021). Adjustable high-power-LED solar simulator with extended spectrum in UV region. Solar Energy, 220, 1130-1136.

Tawfik, M., Tonnellier, X., & Sansom, C. (2018). Light source selection for a solar simulator for thermal applications: A review. Renewable and Sustainable Energy Reviews, 90, 802-813.

Tsuno, Y., Kamisako, K., & Kurokawa, K. (2008). New generation of PV module rating by LED solar simulator - A novel approach and its capabilities. IEEE Photovoltaic Specialists Conference (pp. 1-5). San Diego, CA: IEEE.

Vicente, P. S., Reis, G. L., & Vicente, E. M. (2015). Development of a solid-state solar simulator to test PV modules. IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC) (pp. 1-4). Fortaleza, Brazil: IEEE.

Vosylius, Ž., Novičkovas, A., Laurinavičius, K., & Tamošiūnas, V. (2022). Rational design of scalable solar simulators with arrays of light-emitting diodes and double reflectors. IEEE Journal of Photovoltaics, 12(2), 512-520.

Watjanatepin, N. (2017). Design construct and evaluation of six-spectral LEDs-based solar simulator based on IEC 60904-9. International Journal of Engineering and Technology, 9(2), 923-931.

Watjanatepin, N. (2022). Light emitting diode: Technology and applications (2nd ed.). Pathumthani: Skybooks. (in Thai)

Watjanatepin, N., & Sritanauthaikorn, P. (2022). Rectangular module for large scale solar simulator based on high-powered LEDs array. Telkomnika, 20(2), 462-474.

Watjanatepin, N., Wannakam, K., Sinpaitoon, P., & Somboonkit, P. (2022). Light emitting diode: Application to modern plant cultivation. RMUTSB Academic Journal, 10(2), 216-242. (in Thai)