Integration of InceptionResNetV2 with VGG19 for sugarcane leaf disease recognition

Main Article Content

Aekkarat Suksukont

Abstract

The development of sugarcane leaf disease recognition techniques is challenging due to the diversity of disease characteristics expressed through variations in leaf color, shape, texture, and spatial distribution patterns, which are complex and influenced by environmental conditions. Therefore, advanced image processing and machine learning techniques are essential for accurately recognizing the sugarcane leaf disease. This study presented an integration of InceptionResNetV2 with VGG19 networks using convolutional layers as the main components of the architecture, due to the advantages of the inception module for diverse feature analysis combined with residual connections to address the issue of data loss in deep networks. The proposed model was trained and tested on sugarcane leaf disease dataset and compared with the previous results. Experimental results showed that the model achieved an accuracy of 99.25%, a loss of 0.0263, and a training time of 24.55 minutes. The results of this study not only demonstrated the model's effectiveness in recognizing sugarcane leaf disease but also provided important guidelines for developing plant disease technologies on an industrial scale.

Article Details

How to Cite
Suksukont, A. (2025). Integration of InceptionResNetV2 with VGG19 for sugarcane leaf disease recognition. RMUTSB ACADEMIC JOURNAL, 13(1), 99–109. https://doi.org/10.64989/rmutsbj.2025.266380
Section
Research Article

References

Alharbi, A., Khan, M., & Tayyaba, B. (2023). Wheat disease classification using continual learning. IEEE Access, 11, 90016-90026. https://doi.org/10.1109/ACCESS.2023.3304358

Altabaji, W., Umair, M., Tan, W. H., Foo, L. Y., & Ooi, C. P. (2024). Comparative analysis of transfer learning, LeafNet, and modified LeafNet models for accurate rice leaf diseases classification. IEEE Access, 12, 36622-36635. https://doi.org/10.1109/ACCESS.2024.3373000

Anorboev, A. Musaev, J., Hwang, D. S., Seo, Y. S., & Hong, J. K. (2023). MICL-UNet: Multi-input cross-layer UNet model for classification of diseases in agriculture. IEEE Access, 11, 117685-117697. https://doi.org/10.1109/ACCESS.2023.

Balafas, V., Karantoumanis, E., Louta, M., & Ploskas, N. (2023). Machine learning and deep learning for plant disease classification and detection. IEEE Access, 11, 114352-114377. https://doi.org/10.1109/ACCESS.2023.3324722

Bao, D., Zhou, J., Bhuiyan, S. A., Adhikari, P., Tuxworth, G., Ford, R., & Gao, Y. S. (2024). Early detection of sugarcane smut and mosaic diseases via hyperspectral imaging and spectral-spatial attention deep neural networks. Journal of Agriculture and Food Research, 18, 101369. https://doi.org/10.1016/j.jafr.2024.101369

Begum, S., & Syed, H. (2024). GSAtt-CMNetV3: Pepper leaf disease classification using osprey optimization. IEEE Access, 12, 32493-32506. https://doi.org/10.1109/ACCESS.2024.3358833

Bhargava, A., Shukla, A., Goswami, O. P., Alsharif, M. H., Uthansakul, P., & Uthansakul, M. (2024). Plant leaf disease detection, classification, and diagnosis using computer vision and artificial intelligence: A review. IEEE Access, 12, 37443-37469. https://doi.org/10.1109/ACCESS.2024.3373001

Chen, C. J., Huang, Y. Y., Li, Y. S., Chang, C. Y., & Huang, Y. M. (2020). An AIoT-based smart agricultural system for pests detection. IEEE Access, 8, 180750-180761. https://doi.org/10.1109/ACCESS.2020.3024891

Chouhan, S. S., Kaul, A., Singh, U. P., & Jain, S. (2018). Bacterial foraging optimization-based radial basis function neural network (BRBFNN) for identification and classification of plant leaf diseases: An automatic approach towards plant pathology. IEEE Access, 6, 8852-8863. DOI: 10.1109/ACCESS.2018.2800685

Daphal, S., & Koli, S. (2022). Sugarcane leaf disease dataset. Mendeley Data, 1. https://doi.org/10.17632/9424skmnrk.1

Daphal, S. D., & Koli, S. M. (2023). Enhancing sugarcane disease classification with ensemble deep learning: A comparative study with transfer learning techniques. Heliyon, 9(8), e18261. https://doi.org/10.1016/j.heliyon.2023.e18261

Daphal, S. D., & Koli, S. M. (2024). Enhanced deep learning technique for sugarcane leaf disease classification and mobile application integration. Heliyon, 10(8), e29438. https://doi.org/10.1016/j.heliyon.2024.e29438

Elfatimi, E., Eryigit, R., & Elfatimi, L. (2022). Beans leaf diseases classification using MobileNet models. IEEE Access, 10, 9471-9482. https://doi.org/10.1109/ACCESS.2022.3142817

Hosny, K. M., El-Hady, W., Samy, F. M., Vrochidou, E., & Papakostas, G. A. (2023). Multi-class classification of plant leaf diseases using feature fusion of deep convolutional neural network and local binary pattern. IEEE Access, 11, 62307-62317. DOI:10.1109/ACCESS.2023.328673

Lahlali, R., Taoussi, M., Laasli, S. E., Gachara, G., Ezzouggari, R., Belabessf, Z., Aberkani, K., Assouguem, A., Meddich, A., El Jarroudi, M. & Barka, E. A. (2024). Effects of climate change on plant pathogens and host-pathogen interactions. Crop and Environment, 3(3), 159-170. https://doi.org/10.1016/j.crope.2024.05.003

Madhurya, C., & Jubilson, E. A. (2023). YR2S: Efficient deep learning technique for detecting and classifying plant leaf diseases. IEEE Access, 12, 3790-3804. https://doi.org/10.1109/ACCESS.2023.3343450

Mahum, R., Irtaza, A., & Javed, A. (2023). EDL-Det: A robust TTS synthesis detector using VGG19-based YAMNet and ensemble learning block. IEEE Access, 11, 134701-134716. https://doi.org/10.1109/ACCESS.2023.3332561

Masood, M., Nawaz, M., Nazir, T., Javed, A., Alkanhel, R., & Elmanna, H. (2023). MaizeNet: A deep learning approach for effective recognition of maize plant leaf diseases. IEEE Access, 11, 52862-52876. https://doi.org/10.1109/ACCESS.2023.

Moupojou, E., Tagne, A., Retraint, F., Tadonkemwa, A., Wilfried, D., Tapamo, H., & Nkenlifack, M. (2023). FieldPlant: A dataset of field plant images for plant disease detection and classification with deep learning. IEEE Access, 11, 35398-35410. https://doi.org/10.1109/ACCESS.2023.3263042

Moupojou, E., Retraint, F., Tapamo, H., Nkenlifack, M., Kacfah, C., & Tagne, A. (2024). Segment anything model and fully convolutional data description for plant multi-disease detection on field images. IEEE Access, 12, 102592-102605. https://doi.org/10.1109/ACCESS.2024.3433495

Peyal, H. I., Nahiduzzaman, M., Pramanik, A. H., Syfullah, K., Shahriar, S. M., & Sultana, A. (2023). Plant disease classifier: Detection of dual-crop diseases using lightweight 2D CNN architecture. IEEE Access, 11, 110627-110643. https://doi.org/10.1109/ACCESS.2023.3320686

Ramadan, S., Sakib, T., Al Farid, F., Islam, S., Abdullah, J. B., & Bhuiyan, R. (2024). Improving wheat leaf disease classification: Evaluating augmentation strategies and CNN-based models with limited dataset. IEEE Access, 12, 69853-69874. https://doi.org/10.1109/ACCESS.2024.3397570

Raza, M. M., & Bebber, D. P. (2022). Climate change and plant pathogens. Current Opinion in Microbiology, 70, 102233. https://doi.org/10.1016/j.mib.2022.102233

Salam, A., Naznine, M., Jahan, N., Nahid, E., Nahiduzzaman, Chowdhury, M. (2024). Mulberry leaf disease detection using CNN-based smart Android application. IEEE Access, 12, 83575-83588. https://doi.org/10.1109/ACCESS.2024.

Singh, B. K., Delgado-Baquerizo, M., Egidi, E., Guirado, E., Leach, J. E., Liu, H. W., & Trivedi, P. (2023). Climate change impacts on plant pathogens, food security and paths forward. Nature Reviews Microbiology, 21, 640-656. https://doi.org/10.1038/s41579-023-00900-7

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, Inception-ResNet and the impact of residual connections on learning. Proceedings of the 31st AAAI Conference on Artificial Intelligence. USA. (pp. 1-7). https://doi.org/10.1609/aaai.v31i1.11231

Tabbakh, A., & Barpanda, S. S. (2023). A deep features extraction model based on the transfer learning model and vision transformer 'TLMViT' for plant disease classification. IEEE Access, 11, 45377-45392. DOI: 10.1109/ACCESS.2023.

Yead, A. R., Rukhsara, L., Rabeya, T., & Jahan, I. (2024). Deep learning-based classification of sugarcane leaf disease. Proceedings of the 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT). Bangladesh. (pp. 818-823). https://doi.org/10.1109/ICEEICT62016.2024.10534551