การยับยั้งการเจริญของจุลินทรีย์ก่อโรคและการเป็นพิษต่อเซลล์มะเร็ง ด้วยสารสกัดจากต้นโทงเทง

Main Article Content

ศิรพัชร์ อักโขสุวรรณ
ศิริพร บำเพ็ญผล
ทิชาภัทร เดชนรสิงห์
กมลพัชร นันทการ
ธนาวดี บุญขัยดี

บทคัดย่อ

          การศึกษาสารสกัดจากต้นโทงเทง (Physalis angulata) ด้วยเครื่องอัลตราโซนิกความถี่ 45 กิโลเฮิรตซ์ ที่อุณหภูมิ 40 องศาเซลเซียส นาน 30 นาที พบว่า ให้ผลการต้าน DPPH การต้านแบคทีเรียก่อโรค 4 ชนิด คือ Mycobacterium tuberculosis, Klebsiella pneumoniae, Magnaporthe grisea และ Alternaria brassicicola รวมถึงการทดสอบการต้านเซลล์มะเร็งในหลอดทดลอง 3 ชนิด คือ เซลล์มะเร็งปอด (NCI-H187) เซลล์มะเร็งตับ (HepG2) เซลล์มะเร็งช่องปาก (KB) และเซลล์มะเร็งลำไส้ใหญ่ (Caco2) จากการทดสอบพบว่า ค่า IC50 การต้านอนุมูลอิสระ DPPH สารสกัดเมทานอลจากราก ลำต้น ใบและผล สารสกัดอะซิโตนจากราก ใบและผล แตกต่างอย่างไม่มีนัยสำคัญกับ ค่า IC50 ของกรดแอสคอร์บิก (p³0.05) มีค่า 97.52±22.29, 321.11±160.79, 109.25±7.76, 98.00±3.93, 218.86±55.25, 132.22±7.63, 109.09±7.45 และ 26.00±0.36 µg/ml ตามลำดับ สารสกัดเฮกเซนจากราก มีค่า IC50 สูงสุด แตกต่างอย่างมีนัยสำคัญทางสถิติกับสารสกัดอะซิโตนและเมทานอล มีค่า IC50 เท่ากับ 546.89±216.91 µg/ml พบว่า สารสกัดอะซิโตนจากผลยับยั้งการเจริญของเชื้อ M. tuberculosis ได้ดีกว่าเชื้อ K. pneumoniae เชื้อ M. grisea และเชื้อ A. brassicicola อย่างมีนัยสำคัญ และนอกจากนี้สารสกัดดังกล่าวยังมีความเป็นพิษต่อเซลล์มะเร็งปอดซึ่งมีความแตกต่างจากเซลล์มะเร็งตับ เซลล์มะเร็งช่องปาก และเซลล์มะเร็งลำไส้ใหญ่อย่างมีนัยสำคัญ (p<0.05) อีกด้วย แนวทางการใช้ประโยชน์จากการศึกษานี้ เพื่อส่งเสริมการใช้สมุนไพรเพื่อลดไขมันสะสมเกินความจำเป็น

Article Details

รูปแบบการอ้างอิง
อักโขสุวรรณ ศ., บำเพ็ญผล ศ., เดชนรสิงห์ ท., นันทการ ก., & บุญขัยดี ธ. (2024). การยับยั้งการเจริญของจุลินทรีย์ก่อโรคและการเป็นพิษต่อเซลล์มะเร็ง ด้วยสารสกัดจากต้นโทงเทง. วารสารวิชาการ มทร.สุวรรณภูมิ, 12(2), 169–185. สืบค้น จาก https://li01.tci-thaijo.org/index.php/rmutsb-sci/article/view/261861
ประเภทบทความ
บทความวิจัย

เอกสารอ้างอิง

Barceló-Coblijn, G., Martin, M. L., De Almeida, R. F. M., Noguera-Salvà, M. A., Marcilla-Etxenike, A., Guardiola Serrano, F., Lüth, A., Kleuser, B., Halver, J. E., & Escribá, P. V. (2011). Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19569-19574.

Belayneh, Y. M., Birhanu, Z., Birru, E. M., & Getenet, G. (2019). Evaluation of in vivo antidiabetic, antidyslipidemic, and in vitro antioxidant activities of hydromethanolic root extract of Datura stramonium L. (Solanaceae). Journal of Experimental Pharmacology, 11(1), 29-38.

Beveridge, T. J. (1990). Mechanism of gram variability in select bacteria. Journal of bacteriology, 172(3), 1609-1620.

Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200.

Boonsombat, J., Chawengrum, P., Mahidol, C., Kittakoop, P., Ruchirawat, S., & Thongnest, S. (2020). A new 22, 26-seco physalin steroid from Physalis angulata. Natural Product Research, 34(8), 1097-1104.

Brennan, P. J., & Nikaido, H. (1995). The envelope of mycobacteria. Annual review of biochemistry, 64(1), 29-63.

Cabrera-Sanchez, J., Cuba, V., Vega, V., Van der Stuyft, P., & Otero, L. (2022). Lung cancer occurrence after an episode of tuberculosis: a systematic review and meta-analysis. European Respiratory Review, 31(165), 1-13.

Changsen, C., Franzblau, S. G., & Palittapongarnpim, P. (2003). Improved green fluorescent protein reporter gene-based microplate screening for antituberculosis compounds by utilizing an acetamidase promoter. Antimicrobial Agents and Chemotherapy, 47(12), 3682-3687.

Chooklin C. S., Chaichan, W., & Dikit P. (2021). The Potential of biosurfactant from pomelo peel fermentation for bacterial inhibition. Rajamangala University of Technology Srivijaya Research Journal, 13(3), 704-716. (in Thai)

Choosong, J., & Siriruk P. (2014). Development of the herbal soap product from the palmyrah fruit of the conservation tourism group, Sathingpra district, Songkhla province. RMUTSB Academic Journal, 2(2), 165-173. (in Thai)

Clinical and Laboratory Standards Institute (CLSI). (2002). Reference method for broth microdilution antifungal susceptibility testing of filamentous fungi; Approved standard. CLSI document M38-A, Wayne, Pennsylvania.

Clinical and Laboratory Standards Institute (CLSI). (2006a). Method for dilution antimicrobial susceptibility test for bacteria that growth aerobically; Approve standard 7th edition. CLSI document M7-A7 vol. 26, no. 2. Wayne, Pennsylvania.

Clinical and Laboratory Standards Institute (CLSI). (2006b). Performance standards for antimicrobial susceptibility testing; Sixteenth informational supplement. CLSI document M100-S16, vol. 26, no. 3, Wayne, Pennsylvania.

Collins, L. A., Torrero, M. N., & Franzblau, S. G. (1998). Green fluorescent protein reporter microplate assay for high-throughput screening of compounds against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 42(2), 344-347.

Cornell College of Agriculture and Life Sciences (Cornell CALS). (2019). Saponins. Retrieved 10 January 2024, from https://poisonousplants.ansci.cornell.edu/toxicagents/saponin.html

Cukic, V. (2017). The association between lung carcinoma and tuberculosis. Medical Archives, 71(3), 212-214.

De Oliveira, A. M., Malunga, L. N., Perussello, C. A., Beta, T., & Ribani, R. H. (2020). Phenolic acids from fruits of Physalis angulata L. in two stages of maturation. South African Journal of Botany, 131(1), 448-453.

Dougnon, T. V., Bankolé, H. S., Klotoé, J. R., Sènou, M., Fah, L., Koudokpon, H., Akpovi, C., Dougnon T. J., Addo, P. Loko, F., & Boko, M. (2014). Treatment of hypercholesterolemia: screening of Solanum macrocarpon Linn (Solanaceae) as a medicinal plant in Benin. Avicenna Journal of Phytomedicine, 4(3), 160-169.

Ferreira, L. M. D. S. L., Vale, A. E. D., Souza, A. J. D., Leite, K. B., Sacramento, C., Moreno, M. L. V., Araujo, T. H., Soares, M. B. P., & Grassi, M. F. R. (2019). Anatomical and phytochemical characterization of Physalis angulata L.: a plant with therapeutic potential. Pharmacognosy Research, 11(2), 171-177.

Forest Herbarium. (2023). Physalis angulata L. Retrieved 15 January 2023, from https://www.dnp.go.th/botany/mindexdictdetail.aspx?runno=2832 (in Thai)

Guarro, J., Pujol, I., Aguilar, C., Llop, C., & Fernandez-Ballart, J. (1998). Inoculum preparation for in-vitro susceptibility testing of filamentous fungi. The Journal of Antimicrobial Chemotherapy, 42(3), 385-387.

Haugland, R. P. (2002). Assay for cell viability, proliferation and function. Handbook of Fluorescent Probes and Research Products. Eugene, Oregon: Molecular Probes.

Hseu, Y. C., Wu, C. R., Chang, H. W., Senthil-Kumar, K. J., Lin, M. K., Chen, C. S., Cho, H. J., Huang, C. Y., Huang, C. Y., Lee, H. Z., Hsieh, W. T., Chung, J. G., Wang, H. M., & Yang, H. L. (2011). Inhibitory effects of Physalis angulata on tumor metastasis and angiogenesis. Journal of Ethnopharmacology, 135(3), 762-771.

Kor-arnan, S., Paoblake, S., & Aswachaisuvikom, T. (2015). Antibacterial, antioxidation, antiproteolytic, and cytotoxicity activity of Stevia rebaudiana Bertoni Leaves. Journal of Science and Technology, Ubon Ratchathani University, 17(3), 48-55. (in Thai)

Korchowiec, B., Gorczyca, M., Wojszko, K., Janikowska, M., Henry, M., & Rogalska, E. (2015). Impact of two different saponins on the organization of model lipid membranes. Biochimica et Biophysica Acta Biomembranes, 1848(10), part A, 1963-1973.

Krishna, T. M., Vadluri, R., & Kumar, E. M. (2013). In vitro determination of antioxidant activity of Physalis angulata Lnn. International Journal of Pharma and Bio Sciences, 4(3), 541-549.

Kumagai, M., Yoshida, I., Mishima, T., Ide, M., Fujita, K., Doe, M., Nishikawa, K., & Morimoto, Y. (2021). 4β-Hydroxywithanolide E and withanolide E from Physalis peruviana L. inhibit adipocyte differentiation of 3T3-L1 cells through modulation of mitotic clonal expansion. Journal of Natural Medicines, 75(1), 232-239.

Kusumaningtyas, R. W., Laily, N., & Limandha, P. (2015). Potential of ciplukan (Physalis angulata L.) as source of functional ingredient. Procedia Chemistry, 14(1), 367-372.

Lee, H., Woo, S. M., Jang, H., Kang, M., & Kim, S. Y. (2022). Cancer depends on fatty acids for ATP production: a possible link between cancer and obesity. Seminars in Cancer Biology, 86(2), 347-357.

Maldonado, E., Hurtado, N. E., Pérez-Castorena, A. L., & Martínez, M. (2015). Cytotoxic 20, 24-epoxywithanolides from Physalis angulata. Steroids, 104(1), 72-78.

Malik, I., Csollei, J., Jampílek, J., Stanzel, L., Zadrazilova, I., Hosek, J., Pospísilova, S., Cízek, A., Coffey, A., & O'Mahony, J. (2016). The structure-antimicrobial activity relationships of a promising class of the compounds containing the N-arylpiperazine scaffold. Molecules, 21(10), 1274.

Matthayom, W., Nochai, K., Kokaew, K., Pisapak, K., & Robmuang, D. (2020). Investigation of antioxidant capacity and antioxidant activity of Ma-huad (Lepisanthes rubiginosa (Roxb.) Leenh.) juice. RMUTSB Academic Journal, 8(2), 187-198. (in Thai)

Meira, C. S., Guimarães, E. T., Dos Santos, J. A., Moreira, D. R., Nogueira, R. C., Tomassini, T. C., Ribeiro, I. M., De Souza, C. V., Ribeiro Dos Santos, R., & Soares. M. B. (2015). In vitro and in vivo antiparasitic activity of Physalis angulata L. concentrated ethanolic extract against Trypanosoma cruzi. Phytomedicine, 22(11), 969-974.

National Institutes of Health (NIH). (2023). Lipid Storage Diseases. Retrieved 27 December 2023, from https://www.ninds.nih.gov/health-information/disorders/lipid-storage-diseases

National Library of Medicine (NLM). (2023). Bacillus cereus. Retrieved 27 December 2023, from https://www.ncbi.nlm.nih.gov/books/NBK459121/

Neto, R. N. M., de Barros Gomes, E., Weba-Soares, L., Dias, L. R. L., da Silva, L. C. N., & de Miranda, R. C. M. (2019). Biotechnological production of statins: metabolic aspects and genetic approaches. Current pharmaceutical biotechnology, 20(15), 1244-1259.

O'Brien, J., Wilson, I., Orton, T., & Pognan, F. (2000). Investigation of the alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European Journal of Biochemistry, 267(17), 5421-5426.

Paradelo, R., Moldes, A. B., Dominguez, J. M., & Barral, M. T. (2009). Reduction of water repellence of hydrophobic plant substrates using biosurfactant produced from hydrolyzed grape marc. Journal of Agricultural and Food Chemistry, 57(11), 4895-4899.

Pietro, R. C., Kashima, S., Sato, D. N., Januário, A. H., & França, S. C. (2000). In vitro antimycobacterial activities of Physalis angulata L. Phytomedicine, 7(4), 335-338.

Pimrote, K., Teekayu, K., & Sudprasert, P. (2020). Antioxidant activity and inhibition effect on pseudomonas aeruginosa of extracts from Pa-Yom (Shorea roxburghii G. Don). RMUTSB Academic Journal, 8(1), 15-27. (in Thai)

Pinto, N. B., Morais, T. C., Carvalho, K. M. B., Silva, C. R., Andrade, G. M., Brito, G. A. C., Veras, M. L., Pessoa, O. D. L., Rao, V. S., & Santos, F. A. (2010). Topical anti-inflammatory potential of Physalin E from Physalis angulata on experimental dermatitis in mice. Phytomedicine, 17(10), 740-743.

Pourmasoumi, M., Hadi, A., Rafie, N., Najafgholizadeh, A., Mohammadi, H., & Rouhani, M. H. (2018). The effect of ginger supplementation on lipid profile: a systematic review and meta-analysis of clinical trials. Phytomedicine, 43(1), 28-36.

Reichardt, C. & Welton, T. (2011). Solvents and Solvent Effects in Organic Chemistry. Weinheim, Germany: Wiley‐VCH Verlag GmbH & Co. KGaA.

Reynolds, J., Moyes, R. B., & Breakwell, D. P. (2009). Differential staining of bacteria: acid fast stain. Current Protocols in Microbiology, Supplement 15, Appendix A3H, 1-5.

Rivera, D. E., Ocampo, Y. C., Castro, J. P., Caro, D., & Franco, L. A. (2015). Antibacterial activity of Physalis angulata L., Merremia umbellata L., and Cryptostegia grandiflora Roxb. Ex R. Br.-medicinal plants of the Colombian Northern Coast. Oriental Pharmacy and Experimental Medicine, 15, 95-102.

Row, L. R., Sarma, N. S., Matsuura, T., & Nakashima, R. (1978). Physalins E and H, new physalins from Physalis angulata and P. lancifolia. Phytochemistry, 17(9), 1641-1645.

Rouhi-Boroujeni, H., Rouhi-Boroujeni, H., Heidarian, E., Mohammadizadeh, F., & Rafieian-Kopaei, M. (2015). Herbs with anti-lipid effects and their interactions with statins as a chemical anti-hyperlipidemia group drugs: a systematic review. ARYA atherosclerosis, 11(4), 244-251.

Sala, A., Bordes, P., & Genevaux, P. (2014). Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins, 6(3), 1002-1020.

Salamon, H., Bruiners, N., Lakehal, K., Shi, L., Ravi, J., Yamaguchi, K. D., Pine, R., & Gennaro, M. L. (2014). Cutting edge : vitamin D regulates lipid metabolism in Mycobacterium tuberculosis infection. Journal of Immunology, 193(1), 30-34.

Shahzad, T., Ahmad, I., Choudhry, S., Saeed, M. K., & Khan, M. N. (2014). DPPH free radical scavenging activity of tomato, cherry tomato and watermelon: lycopene extraction, purification and quantification. International Journal of Pharmacy and Pharmaceutical Sciences, 6(suppl.2), 223-228.

Slayden, R. A., Dawson, C. C., & Cummings, J. E. (2018). Toxin-antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis. Pathogens and Disease, 76(4), 1-12.

Sun, C. P., Qiu, C. Y., Zhao, F., Kang, N., Chen, L. X., & Qiu, F. (2017). Physalins V-IX, 16, 24-cyclo-13, 14-seco withanolides from Physalis angulata and their antiproliferative and anti-inflammatory activities. Scientific reports, 7, 4057.

Tanner, L., Haynes, R. K., & Wiesner, L. (2020). Accumulation of TB-active compounds in murine organs relevant to infection by Mycobacterium tuberculosis. Frontiers in Pharmacology, 11, 724.

Thongekkaew, J., & Teangtam, W. (2023). Antioxidant activity, vitamin c and total phenolic contents in three types of lettuce grown in hydroponics and soil-based. RMUTSB Academic Journal, 11(2), 186-198. (in Thai)

World Health Organization (WHO). (2021a). Global tuberculosis report 2021. Retrieved 27 December 2023, from https://www.who.int/publications/i/item/9789240037021

World Health Organization (WHO). (2021b). Tuberculosis. Retrieved 27 December 2023, from https://www.who.int/news-room/fact-sheets/detail/tuberculosis

Xu, R., Yang, K., Li, S., Dai, M., & Chen, G. (2020). Effect of green tea consumption on blood lipids: a systematic review and meta-analysis of randomized controlled trials. Nutrition journal, 19, 48.

Xue, Y. W., Itoh, H., Dan, S., & Inoue, M. (2022). Gramicidin A accumulates in mitochondria, reduces ATP levels, induces mitophagy, and inhibits cancer cell growth. Chemical Science, 13(25), 7482-7491.

Yang, H., Geng, Y. H., Wang, P., Zhang, H. Q., Fang, W. G., & Tian, X. X. (2022). Extracellular ATP promotes breast cancer chemoresistance via HIF-1α signaling. Cell Death & Disease, 13, 199.

Yen, C. Y., Chiu, C. C., Chang, F. R., Chen, J. Y. F., Hwang, C. C., Hseu, Y. C., Yang, H. L., Lee, A. Y. L., Tsai, M. T., Guo, Z. L., Cheng, Y. S., Liu, Y. C., Lan, Y. H., Chang, Y. C., Ko, Y. C., Chang, H. W., & Wu, Y. C. (2010). 4β-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest. BMC Cancer, 10, 46.