Effects of Striped Catfish and Nile Tilapia Mince Ratios on Fish Ball Quality

Main Article Content

Jukkarin Treeinthong
Piyachat Wiriyaampaiwong

Abstract

This research aimed to evaluate the effects of different ratios of unwashed striped catfish mince (UW-SC) and washed Nile tilapia mince (W-NT) on the gel properties of mixed fish gels and the quality of fish balls. The mince ratios were varied at 25:75, 50:50, and 75:25 (UW-SC:W-NT) and subjected to two heating conditions: heating at 40 °C for 20 min followed by 90 °C for 20 min (40/90 °C), and heating at 60 °C for 20 min followed by 90 °C for 20 min (60/90 °C). These treatments were compared with Nile tilapia gel heated at 40/90 °C (0:100) and striped catfish gel heated at 60/90 °C (100:0). Subsequently, the optimal formulation was selected for consumer acceptance testing (100 panelists) and nutritional value analysis. The results indicated that the incorporation of UW-SC at levels of 50% or higher significantly increased hardness of mixed fish gels (p < 0.05). The mixed fish gels at ratios of 25:75 (40/90 °C) and 75:25 (60/90 °C) exhibited the highest gel strength (p < 0.05). Increasing the proportion of UW-SC tended to decrease cohesiveness, breaking distance, whiteness, and expressible water. However, sensory evaluation revealed that all mixed fish ball formulations received moderate overall liking scores, with no significant differences among treatments (p>0.05). Based on textural properties, taste, and overall liking, the formulation with a 75:25 ratio of UW-SC:W-NT subjected to the 60/90 °C heating condition was selected as the most suitable for consumer acceptance testing with 100 panelists. Consumer acceptance testing demonstrated an acceptance rate of 92% and a purchase decision of 79%. Nutritional analysis showed that mixed fish balls contain 14.81% protein, with low fat, cholesterol, and sodium contents, and was safe for consumption. Therefore, blending striped catfish mince and Nile tilapia mince at an appropriate ratio represents a promising approach for producing fish balls with desirable textural quality and high consumer acceptance.

Downloads

Download data is not yet available.

Article Details

How to Cite
Treeinthong, J., & Wiriyaampaiwong, P. . (2026). Effects of Striped Catfish and Nile Tilapia Mince Ratios on Fish Ball Quality . Kalasin University Journal of Science Technology and Innovation, 5(1), 17–32. retrieved from https://li01.tci-thaijo.org/index.php/sci_01/article/view/269235
Section
Research Articles

References

Martín‐Sánchez AM, Navarro C, Pérez‐Álvarez JA, Kuri V. Alternatives for efficient and sustainable production of surimi: A review. Compr Rev Food Sci Food Saf. 2009; 8(4): 359-374.

Suzuki T. Fish and Krill Protein Processing Technology. London: Applied Science Publ; 1981.

Buamard N, Singh A, Benjakul S. Improvement of surimi gel quality using protein cross-linker, hydrocolloids and protease inhibitor. Turk J Fish Aquat Sci. 2024; 24: TRJFAS24808. doi:10.4194/TRJFAS24808

Panpipat W, Chaijan M, Benjakul S. Gel properties of croaker–mackerel surimi blend. Food Chemistry. 2010; 122(4): 1122-1128.

อรทัย เปี่ยมปรีดา, จิราพร รุ่งเลิศเกรียงไกร. การผลิตลูกชิ้นปลาจากเนื้อปลาสองชนิด. อาหาร. 2546: 33(1): 35-44.

Yi S, Huo Y, Qiao C, Wang W, Li X. Synergistic gelation effects in surimi mixtures composed of Nemipterus virgatus and Hypophthalmichthys molitrix. J Food Sci. 2019; 84(12): 3634-3641. doi:10.1111/1750-3841.14761

จักรินทร์ ตรีอินทอง, ฤทธิ์ชัย คำโฮง, วนัฐวิน ภูขมร. การพัฒนาผลิตภัณฑ์ลูกชิ้นปลาสวาย. วารสารแก่นเกษตร. 2562; 47(พิเศษ2): 461–466. https://ag2.kku.ac.th/kaj/PDF.cfm?filename=742.pdf&id=3797&keeptrack=4

จักรินทร์ ตรีอินทอง. การปรับปรุงสมบัติเชิงหน้าที่ของโปรตีนในลูกชิ้นจากปลาน้ำจืด [วิทยานิพนธ์ปริญญาดุษฎีบัณฑิต]. กรุงเทพฯ: บัณฑิตวิทยาลัย มหาวิทยาลัยเกษตรศาสตร์; 2559.

Marine Fisheries Research Department (MFRD). Laboratory Manual on Analytical Methods and Procedures for Fish and Fish Products. Singapore: SEAFDEC; 1987.

Lanier TC. Measurement of surimi composition and functional properties. In: Lanier TC, Lee CM, editors. Surimi Technology. New York: Marcel Dekker, Inc.; 1992. p. 123-163.

สิตา เบญจไพพงษ์, ณิชกานต์ พุทธิเสาวภาคย์, ภัทิรา สุดเลิศ, วรางคณา สมพงษ์. การผลิตลูกชิ้นปลาเสริมผงกระดูกจากปลาแซลมอน. วารสารวิทยาศาสตร์และเทคโนโลยี (ววท.). 2564; 29(4): 561-571. doi: 10.14456/tstj.2021.48

Association of Official Analytical Chemists (AOAC). Official Methods of Analysis. 20th ed. Washington, DC: AOAC; 2016.

Andrews W. Manual of Food Quality Control. Vol. 4, Rev. 1: Microbiological Analysis. Rome: FAO Food and Nutrition Paper; 1992.

Association of Official Analytical Chemists (AOAC). Official Methods of Analysis. 22nd ed. Washington, DC: AOAC; 2023.

Lee CM, Chung KH. Analysis of surimi gel properties by compression and penetration tests. J Texture Stud. 1989; 20(3): 363-377.

Yarnpakdee S, Benjakul S, Visessanguan W, Kijroongrojana K. Thermal properties and heat-induced aggregation of natural actomyosin extracted from goatfish (Mulloidichthys martinicus) muscle as influenced by iced storage. Food Hydrocoll. 2009; 23(7): 1779-1784. https://doi.org/10.1016/j.foodhyd.2009.03.006

Suwansakornkul P. The Gel-Forming Characteristics of Lizardfish. Nippon Suisan Gakk. 1993; 59(6): 1029-1037.

Worratao A, Yongsawatdigul J. Cross‐linking of actomyosin by crude tilapia (Oreochromis niloticus) transglutaminase. J Food Biochem. 2003; 27(1): 35-51. https://doi.org/10.1111/j.1745-4514.2003.tb00265.x

จักรินทร์ ตรีอินทอง, วนัฐวิน ภูขมร, ศิวาพร สีดาบุตร. ผลของสภาวะการล้างและการให้ความร้อนต่อสมบัติ เจลของปลาสวาย. แก่นแกษตร. 2562; 47(พิเศษ1): 1265–1272. https://ag2.kku.ac.th/kaj/PDF.cfm?filename=109_Fis34.pdf&id=3581&keeptrack=1

Yongsawatdigul J, Park JW, Virulhakul P, Viratchakul S. Proteolytic degradation of tropical tilapia surimi. J Food Sci. 2000; 65(1): 129-33. https://doi.org/10.1111/j.1365-2621.2000.tb15967.x

ธัญญาภรณ์ ศิริเลิศ. การประเมินลักษณะเนื้อสัมผัสในอาหาร. Journal of Food Technology, Siam University. 2550; 3(1): 6-13. https://li01.tci-thaijo.org/index.php/JFTSU/article/view/38437

Kim JM, Lee CM, Hufnagel LA. Textural properties and structure of starch-reinforced surimi gels as affected by heat-setting. Food Struct. 1987; 6(1): 11.

KIM SH, Carpenter JA, Lanier TC, Wicker L. Setting response of Alaska pollock surimi compared with beef myofibrils. J Food Sci. 1993; 58(3): 531-534. https://doi.org/10.1111/j.1365-2621.1993.tb04317.x

สำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม. มาตรฐานผลิตภัณฑ์ชุมชน ลูกชิ้นปลา (มผช. 328/2547). กรุงเทพฯ: สำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม, กระทรวงอุตสาหกรรม; 2547.