การศึกษาทางทฤษฎีของการตรวจจับแอนไอออนด้วยการสร้างพันธะไฮโดรเจนและฮาโลเจนกับ รีเซ็ปเตอร์อนุพันธ์เอไมด์
Main Article Content
บทคัดย่อ
งานวิจัยนี้ศึกษาสมบัติทางโครงสร้าง สมบัติทางพลังงาน สมบัติทางเทอร์โมไดนามิกส์ และสมบัติทางอิเล็กทรอนิกส์ของการเกิดสารประกอบเชิงซ้อนระหว่างรีเซ็ปเตอร์อนุพันธ์เอไมด์ 7 ชนิด (R1-R7) กับเฮไลด์ไอออน ซึ่งได้แก่ ฟลูออไรด์ คลอไรด์ และโบรไมด์ไอออน โดยใช้ทฤษฎีฟังก์ชันนัลความหนาแน่นที่ระดับของทฤษฎี B3LYP/6-31G(d,p) จากการศึกษาพบว่ารีเซ็ปเตอร์และเฮไลด์ไอออนสร้างสารประกอบเชิงซ้อนผ่านพันธะไฮโดรเจนร่วมกับพันธะฮาโลเจน ซึ่งเป็นกระบวนการคายความร้อนที่เกิดเองได้ ความเสถียรของสารประกอบเชิงซ้อนระหว่างรีเซ็ปเตอร์ R1-R7 กับเฮไลด์ไอออน มีลำดับดังนี้ F- > Cl- > Br- โดยพบว่าฟลูออไรด์ไอออนมีการยึดจับที่แข็งแรงกับทุกรีเซ็ปเตอร์เนื่องจากความเป็นเบสที่สูง สารประกอบเชิงซ้อนที่มีความเสถียรมากที่สุดคือ R5/F- มีค่าพลังงานการยึดจับเท่ากับ -151.39 กิโลแคลอรีต่อโมล นอกจากนี้การเปลี่ยนแปลงพลังงานอิสระกิบส์ของสารประกอบเชิงซ้อนดังกล่าวยังมีค่าสูงสุดเท่ากับ -142.30 กิโลแคลอรีต่อโมล โดยสารประกอบเชิงซ้อนนี้เกิดขึ้นจากพันธะไฮโดรเจน 3 พันธะ และพันธะฮาโลเจน 2 พันธะ
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของ วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยอุบลราชธานี และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว
References
Nocentini, A. and et al. 2021. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. Journal of Enzyme Inhibition and Medicinal Chemistry. 36(1): 561-580.
Liu, Y. and et al. 2019. Recent advances in anion-doped metal oxides for catalytic applications. Journal of Materials Chemistry A. 7(13): 7280-7300.
Gale, P.A. and et al. 2018. Anion receptor chemistry: Highlights from 2016. Coordination Chemistry Reviews. 375: 333-372.
Zhao, L. and Damodaran, S. 2019. Hofmeister order of anions on protein stability originates from Lifshitz-van der Waals dispersion interaction with the protein phase. Langmuir. 35(40): 12993-13002.
Kayal, S., Manna, U. and Das, G. 2019. Fixation of atmospheric CO2 and recognition of anions/hydrated anions: Differential binding mode in protonated vs. neutral tripodal urea/thiourea receptors. Inorganica Chimica Acta. 486: 576-581.
Liu, Y. 2015. Designation and exploration of halide-anion recognition based on cooperative noncovalent interactions including hydrogen bonds and anion-. The Journal of Physical Chemistry A. 119(22): 5842-5852.
Montis, R. 2019. Fluoride binding by an anionic receptor: tuning the acidity of amide NH groups for basic anion hydrogen bonding and recognition. Chemical Communications. 55(19): 2745-2748.
Borissov, A. 2019. Anion recognition in water by charge-neutral halogen and chalcogen bonding foldamer receptors. Journal of the American Chemical Society. 141(9): 4119-4129.
Turner, G., Docker, A. and Beer, P.D. 2021. Anion recognition by halogen bonding and hydrogen bonding bis(triazole)-imidazolium [2] rotaxanes. Dalton Transactions. 50(37): 12800-12805.
Pancholi, J. and Beer, P.D. 2020. Halogen bonding motifs for anion recognition. Coordination Chemistry Reviews. 416: 213281.
Yu, D. and Bai, X. 2023. Integrated in silico-in vitro molecular modeling and design of halogenated phenylalanine-containing anti-hypertensive peptide inhibitors with halogen bonds to target human angiotensin-I-converting enzyme. Chemical Physics. 565: 111732.
Frisch, M.J. and et al. 2009. Gaussian 09. Wallingford: Gaussian, Inc.
Becke, A.D. 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A. 38(6): 3098-3100.
Lee, C., Yang, W. and Parr, R.G. 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B. 37(2): 785-789.
Becke, A.D. 1992. Density-functional thermo-chemistry. I. The effect of the exchange-only gradient correction. The Journal of Chemical Physics. 96(3): 2155-2160.
Eytel, L.M. and et al. 2019. The road to aryl CHanion binding was paved with good intentions: fundamental studies, host design, and historical perspectives in CH hydrogen bonding. Chemical Communications. 55: 5195-5206.
Mondal, D. 2022. Anion recognition through multivalent C–H hydrogen bonds: Anion-Induced Foldamer formation and transport across phospholipid membranes. The Journal of Organic Chemistry. 87(1): 10-17.
Tresca, B.W. and et al. 2015. Substituent effects in CH hydrogen bond interactions: Linear free energy relationships and influence of anions. Journal of the American Chemical Society. 137(47): 14959-14967.
Arunan, E. and et al. 2011. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure and Applied Chemistry. 83(8): 1637–1641.
Manna, U. and et al. 2021. Anion binding studies of urea and thiourea functionalized molecular clefts. Frontiers in Chemistry. 8: 575701.
Malenov, D.P. and Zaric, S.D. 2021. New Type of aromatic -systems for anion recognition: Strong anion- and C−HAnion interactions between halides and aromatic ligands in Half-Sandwich compounds. Chemistry A European Journal. 27(71): 17862-17872.
Russ, T.H. and et al. 2012. A quinoline based bis-urea receptor for anions: a selective receptor for hydrogen sulfate. Natural Product Communications. 7(3): 301-304.
Barabas, J. and et al. 2019. Non-covalent interactions and charge transfer between propene and neutral Yttrium-doped and pure gold clusters. Chemistry A European Journal. 25(69): 15795-15804.
Panda, P.K. and et al. 2022. Contact electrification through interfacial charge transfer: a mechanistic viewpoint on solid–liquid interfaces. Nanoscale Advances. 4(3): 884-893.
Toupkanloo, H.A. and Rahmani, Z. 2018. An in-depth study on noncovalent stacking interactions between DNA bases and aromatic drug fragments using DFT method and AIM analysis: conformers, binding energies, and charge transfer. Applied Biological Chemistry. 61(2): 209-226.