Hydrothermal Synthesis and Electrical Properties of CeO2 Nanoclusters
Main Article Content
Abstract
In this research, the facile hydrothermal method was used to synthesize cerium oxide (CeO2) nanoclusters at two different temperatures employing cerium nitrate hexahydrate as the initial cerium material. The morphology of the synthesized CeO2 nanoclusters was characterized by Field emission scanning electron microscopy. The as-prepared products were examined utilizing Raman spectroscopy, X-ray photoemission spectroscopy and X-ray diffraction. The electrical properties were investigated by measuring the IV curves. The findings from all the examinations clearly indicated the successful synthesis of CeO2 nanoclusters under the specified conditions.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของ วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยอุบลราชธานี และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว
References
Campbell, C.T. and Peden, C.H.F. 2005. Chemistry: Oxygen vacancies and catalysis on ceria surfaces. Science. 309: 713-714.
He, L. and et al. 2015. Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies: A review. Journal of Rare Earths. 33(8): 791-799.
Younis, A., Chu, D. and Li, S. 2016. Cerium oxide nanostructures and their applications. Functionalized Nanomaterials. 3: 53-68.
Tang, W.X. and Gao, P.X. 2016. Nanostructured CeO2: Preparation, characterization and application in energy and environmental catalysis. MRS Communications. 6(4): 311-329.
Sun, C., Li, H. and Chen, L. 2012. Nanostructured ceria-based materials: synthesis, properties, and applications. Energy and Environmental Science. 5: 8475-8505.
Trovarelli, A. and Llorca, J. 2017. Ceria catalysts at nanoscale: How do crystal shapes shape catalysis? ACS Catalysis. 7: 4716-4735.
Ferreira, N.S. and et al. 2016. Cassava-starch-assisted sol-gel synthesis of CeO2 nanoparticles. Materials Letters. 165: 139-142.
He, D. and et al. 2016. Rapid synthesis of nano-scale CeO2 by microwave-assisted sol-gel method and its application for CH3SH catalytic decomposition. Journal of Environmental Chemical Engineering. 4: 311-318.
Dhall, A. and Self, W. 2018. Cerium oxide nanoparticles: A brief review of their synthesis methods and biomedical applications. Antioxidants. 7(97): 13.
Wu, G.S. and et al. 2004. An improved sol-gel template synthesis route to large-scale CeO2 nanowires. Materials Research Bulletin. 39: 1023-1028.
Wang, S.F. and et al. 2007. Shape-controlled synthesis of CeOHCO3 and CeO2 micro-structures. Journal of Crystal Growth. 307: 386-394.
Yin, X. and et al. 2012. Hydrothermal synthesis of CeO2 nanorods using a strong base-weak acid salt as the precipitant. Nanoscience Methods. 1: 115-122.
Arul, N.S., Mangalaraj, D. and Han, J.I. 2015. Facile hydrothermal synthesis of CeO2 nanopebbles. Bulletin of Materials Science. 38(5): 1135-1139.
Panahi-Kalamuei, M. and et al. 2015. Synthesis and characterization of CeO2 nanoparticles via hydrothermal route. Journal of Industrial and Engineering Chemistry. 21: 1301-1305.
Hu, C. and et al. 2006. Direct synthesis and structure characterization of ultrafine CeO2 nanoparticles. Nanotechnology. 17: 5983-5987.
Tamizhdurai, P. and et al. 2017. Environmentally friendly synthesis of CeO2 nanoparticles for the catalytic oxidation of benzyl alcohol to benzaldehyde and selective detection of nitrite. Scientific Reports. 7(46372): 1-12.
Shen, G. and et al. 2011. Hydrothermal synthesis of CeO2 nano-octahedrons. Materials Letter. 65: 1211-1214.
Liu, I., Hon, M. and Teoh, L.G. 2017. The synthesis, characterization and optical properties of nanocrystallined cerium dioxide by the Hydrothermal Method. Materials Transactions. 58(3): 505-508.
dos Santos, A.P.B. and et al. 2020. Formation of CeO2 nanotubes through different conditions of hydrothermal synthesis. Surfaces and Interfaces. 21: 100746.
Bugrov, A.N. and et al. 2020. Hydrothermal synthesis of CeO2 nanostructures and their electrochemical properties. Nanosystems: Physics, Chemistry, Mathematics. 11(3): 355-364.
Lin, B and et al. 2017. Effect of ceria morphology on the catalytic activity of Co/CeO2 catalyst for ammonia synthesis. Catalysis Communications. 101: 15-19.
Kim, H.J. and et al. 2020. Design of ceria catalysts for low-temperature CO oxidation. ChemCatChem. 12: 11-26.
Tana and et al. 2009. Morphology-dependent redox and catalytic properties of CeO2 nanostructures: Nanowires, nanorods and nanoparticles. Catalysis Today. 148: 179-183.
Zheng, X. and et al. 2019. Insight into the effect of morphology on catalytic performance of porous CeO2 nanocrystals for H2S selective oxidation. Applied Catalysis B. 252: 98-110.
Oliveira, R.C. and et al. 2020. Influence of synthesis time on the morphology and properties of CeO2 nanoparticles: An experimental-theoretical study. Crystal Growth & Design. 20: 5031-5042.