Removal of Brilliant Green Dye from Aqueous Solution onto Fly Ash Based Geopolymer
Main Article Content
Abstract
A geopolymer is an eco-friendly porous inorganic material that can be used as dye adsorbents in wastewater treatment. It is formed upon dissolution of aluminosilicate in the presence of a high basic activating solution. This research aimed to synthesize and characterize fly ash based geopolymer and to examine the use of the synthesized geopolymer to adsorb brilliant green dye from aqueous solution. The geopolymer was characterized by X-ray Fluorescence (XRF), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectrometry (FTIR). The results demonstrated that the suitable dosage of fly ash based geopolymer was 2 g/L, the contact time was 15 minutes with the adsorption efficiency of 97.35 percent for the initial brilliant green dye concentration of 100 ppm. The isotherm of brilliant green dye adsorption by fly ash based geopolymer was consistent with the Langmuir isotherm. The kinetic adsorption corresponded well to the pseudo- second order model. Furthermore, the positive enthalpy value and the negative Gibbs’s free energy indicated that the adsorption process was an endothermic and spontaneous reaction, respectively. The results from this study demonstrated that the geopolymer material synthesized from low-cost materials had potential applications for water treatment and remediation of hazardous dye based pollutants.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของ วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยอุบลราชธานี และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว
References
Al-Tohamy, R. and et al. 2022. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety. 231: 113160.
Mittal, A., Kaur, D. and Mittal, J. 2008. Applicability of waste materials-bottom ash and deoiled soya-as adsorbents for the removal and recovery of a hazardous dye, brilliant green. Journal of Colloid and Interface Science. 326(1): 8-17.
Baidya, K.S. and Kumar, U. 2021. Adsorption of brilliant green dye from aqueous solution onto chemically modified areca nut husk. South African Journal of Chemical Engineering. 35: 33-43.
Ali, I., Asim, M. and Khan, T.A. 2012. Review: Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management. 113: 170-183.
Ali, I. and et al. 2019. High-speed and high-capacity removal of methyl orange and malachite green in water using newly developed mesoporous carbon: Kinetic and isotherm studies. ACS Omega. 4: 19293-19306.
Mansour, R.A. and et al. 2020. Brilliant green dye biosorption using activated carbon derived from guava tree wood. International Journal of Chemical Engineering. 2020: 8053828.
Mansour, R., Simeda, M.G. and Zaatout, A.A. 2021. Removal of brilliant green dye from synthetic wastewater under batch mode using chemically activated date pit carbon. Royal Society of Chemistry Advances. 11(14): 7851-7861.
Tangtermsirikul, S. 2005. Development of fly ash usage in Thailand. In: Proceedings of the International Workshop on Project Management, 9-11 March 2005. Kochi, Japan.
Pradhan, P. and et al. 2022. Factors affecting production and properties of self-compacting geopolymer concrete - A review. Construction and Building Materials. 344: 128174.
Singh, N.B. 2018. Fly ash-based geopolymer binder: A future construction material. Minerals. 8: 299.
Mousa, A. 2023. Utilization of coal bottom ash from thermal power plants as a cement replacement for building: A promising sustain-able practice. Journal of Building Engineering. 74: 106885.
Zhao, J. and et al. 2021. Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment. Journal of Cleaner Production. 307: 127085.
Jha, V.K. and Budhamagar, G.P. 2012. Synthesis of geopolymer from coal fly ash. Journal of Nepal Chemical Society. 30: 24-28.
Aouan, B. and et al. 2023. Development and optimization of geopolymer adsorbent for water treatment: Application of mixture design approach. Journal of Environmental Management. 338: 117853.
Ettahiri, Y. and et al. 2023. A state-of-the-art review of recent advances in porous geopolymer: Applications in adsorption of inorganic and organic contaminants in water. Construction and Building Materials. 395: 132269.
Maleki, A. and et al. 2020. Adsorbent materials based on a geopolymer paste for dye removal from aqueous solutions. Arabian Journal of Chemistry. 13: 3017-3025.
Diehl, M. and et al. 2023. Cassava bagasse as an alternative biosorbent to uptake methylene blue environmental pollutant from water. Environmental Science and Pollution Research. 30: 51920-51931.
Phoo-ngernkhama, T. and et al. 2014. The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature Materials and Design. Materials and Design. 55: 58-65.
Burakov, A.E. and et al. 2018. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety. 148: 702-712.