Isolation and Analysis of Mitragynine in Kratom Leaves by Chromatography Techniques
Main Article Content
Abstract
Mitragynine is the principal active alkaloid in Kratom leaves. In the past, kratom leaves were widely used by Thai people, folk healers and traditional Thai doctors. Later, kratom was classified as a narcotic, causing its development and use to be stagnant. However, kratom has been removed from the list of controlled narcotics under the Narcotics Act in 2021, allowing it to be used more widely. At present, in the process of quality control of kratom leaves and kratom leaf products to meet international standards, it is necessary to use mitragynine as a standard substance, which is expensive and still has to be imported. Therefore, this research aimed to develop an isolation procedure of mitragynine from kratom leaves to replace the import of mitragynine. The extract of kratom leaves was prepared by extracting finely ground kratom leaves with 40% ethanol. The extract was subjected for mitragynine isolation by column chromatography using silica gel (grade 9385) as a stationary phase and chloroform and methanol (with 0.1 N sodium hydroxide) at the ratio of 95:5 as a mobile phase. The collecting fractions from column chromatography were examined for the presence of mitragynine by thin layer chromatography. The fractions containing mitragynine as the major component were combined and mitragynine was further purified by turning it into mitragynine picrate. By using high performance thin layer chromatography (HPTLC) technique, the isolated mitragynine had Rf value that matched with that of the standard mitragynine. In addition, the characterization of mitragynine picrate was also performed by 1H-NMR spectroscopy, Fourier-transform infrared spectroscopy (FITR) and MALDI-TOF mass spectrometry which provided the physical identity data of mitragynine picrate that have never been reported.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของ วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยอุบลราชธานี และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว
References
Mat, N.H. and et al. 2023. Analgesic effects of main indole alkaloid of kratom, mitragynine in acute pain animal model. Behavioural Brain Research. 439: 114251.
Thai PBS. 2021. Fatigue and Aches from WFH Can Be Cured with Kratom Leaves. https://news.thaipbs.or.th/content/307253. Accessed 12 November 2024 (in Thai)
Insuan, W. and et al. 2024. Effect of extraction methods on total phenolic content, antioxidant activity and antibacterial activity of ethanolic leaf extracts of kratom (Mitragyna speciosa). Journal of Science and Technology, Ubon Ratchathani University. 26(1): 34-41. (in Thai)
Nakaphand, T. and et al. 2021. Traditional use of kratom (Mitragyna speciosa Korth) among folk healers in southern Thailand. Journal of Thai Traditional & Alternative Medicine. 14(3): 274-285. (in Thai)
Keawpradub, N. 2021. Kratom leaves: Medicinal Properties, Benefits and Disadvantages. https://kratom.sci.psu.ac.th/knowledge/pharmacy/4308/. Accessed 20 September 2024. (in Thai)
Thongchin, T. and et al. 2024. The evaluation of chemical and physico-chemical Properties of Mitragyna speciosa (Korth.) Havil. leaves. Journal of Thai Traditional & Alternative Medicine. 22(1), 80-93. (in Thai)
De-eknamkul, W. 2021. Evaluation of Herbal Drugs, Raw Materials and Extracts by HPTLC Technique. Bangkok: Faculty of Pharmaceutical Sciences, Chulalongkorn University. (in Thai)
Boffa, L. and et al. 2018. Alkaloid profiles and activity in different Mitragyna speciosa strains. Natural Product Communications. 13(9): 1111-1116.
Still, W.C., Kahn, M. and Mitra, A. 1978. Rapid chromatographic technique for preparative separations with moderate resolution. Journal of Organic Chemistry. 43(14): 2923-2925.
Luanratana, O. 1982. Phytochemical Investigations within the Genus Duboisia. Ph.D. Thesis, University of Queensland.
Akkachayo, K. 2022. The Fascination of Kratom in Thai Herbal Formula. Thai Medicinal Plants Learning Center of Folk Healers - Moh Porn, Keereewong Temple. Chumphon: Chumphon Province Press. (in Thai)
Beng, G.T. and et al. 2011. A simple and cost effective isolation and purification protocol of mitragynine from Mitragyna speciosa korth (ketum) leaves. Malaysian Journal of Analytical Sciences. 15(1): 54-60.
Wang, M. and et al. 2014. Comparison of three chromatographic techniques for the detection of mitragynine and other indole and oxindole alkaloids in Mitragyna speciosa (kratom) plants: Liquid Chromatography. Journal of Separation Science. 37(12): 1411-1418.
Ali, Z., Demiray, H. and Khan, I.A. 2014. Isolation, characterization, and NMR spectroscopic data of indole and oxindole alkaloids from Mitragyna speciosa. Tetrahedron Letters. 55(2): 369-372.
Wungsintaweekul, J. 2021. Kratom. https://kratom.sci.psu.ac.th/knowledge/interdisciplinary/3197/. Accessed 10 November 2024. (in Thai)
Shamima, A.R. and et al. 2012. Antinociceptive action of isolated mitragynine from Mitragyna Speciosa through activation of opioid receptor system. International Journal of Molecular Sciences. 13(9): 11427-11442.
Liu, X. 2021. Organic Chemistry I. Surrey: Kwantlen Polytechnic University.
Prasad, K.D. and Row, T.N.G. 2014. N-Alkyl derivative of 1,9-pyrazoloanthrone as a sensor for picric acid. RSC Advances. 4(85): 45306-45310.
Dinar, K., Kadri, M. and Seridi, A. 2023. Charge transfer complex of N-(4-methoxyphenyl)-2-oxooxazolidine-3-sulfonamide and picric acid: experimental and DFT studies. Malaysian Journal of Chemistry. 25(1): 30-46.
Meddour, A. and Azizi, A. 2017. Synthesis and spectral investigations of pyridinium picrate. Journal of Molecular Structure. 1128: 499-506.
Uma Devi, T. and et al. 2009. Studies on L-valinium picrate single crystal: a promising NLO crystal. Journal of Minerals and Materials Characterization and Engineering. 8(4): 393-403.
Sakamoto, J., Kitajima, M. and Ishikawa, H. 2022. Asymmetric total syntheses of mitragynine,
speciogynine, and 7-hydroxymitragynine. Chemical and Pharmaceutical Bulletin. 70(9): 662-668.
Li, L. 2009. MALDI Mass Spectrometry for Synthetic Polymer Analysis. Hoboken: John Wiley & Sons Inc.
National Center for Biotechnology Information. 2024. PubChem Compound Summary for CID 3034396, Mitragynine. https://pubchem.ncbi.nlm.nih.gov/compound/Mitragynine. Accessed 12 November 2024.
National Center for Biotechnology Information. 2024. PubChem Compound Summary for CID 6954, Picric Acid. https://pubchem.ncbi.nlm.nih.gov/compound/Picric-Acid. Accessed 12 November 2024.
The National Institute of Standards and Technology. 2024. Picric Acid. https://webbook.nist.gov/cgi/cbook.cgi?ID=C88891&Mask=200. Accessed 12 November 2024.
National Center for Biotechnology Information. 2024. PubChem Compound Summary for CID 3032504, Mitragynine picrate. https://pubchem.ncbi.nlm.nih.gov/compound/Mitragynine-picrate. Accessed 12 November 2024.