Coset of a Hypergroup (G,\circ_{N})

Main Article Content

Witthawas Phanthawimol

Abstract

A hyperoperation on a nonempty set gif.latex?H is a function gif.latex?\circ&space;:&space;H\times&space;H\rightarrow&space;P(H)\setminus&space;\{&space;\varnothing&space;\} where gif.latex?P(H) is the power set of gif.latex?H. The value of any gif.latex?(x,y)\in&space;H\times&space;H under gif.latex?\circ is denoted by gif.latex?x\circ&space;y which is called the hyperproduct of gif.latex?x and gif.latex?y. If we have gif.latex?G is a group and gif.latex?N is a normal subgroup of gif.latex?G, then gif.latex?(G,\circ&space;_{N}) is a hypergroup where the hyperoperationis gif.latex?\circ&space;_{N} defined by gif.latex?x\circ_{N}y=(xy)N for all gif.latex?x,y\in&space;G.


We take a hyperoperation gif.latex?\circ&space;_{N} to construct cosets of any subgroup gif.latex?H of gif.latex?G instead of coset multiplication by binary operation of gif.latex?G and studies basic properties of this new structure of coset.

Article Details

How to Cite
Phanthawimol, W. (2022). Coset of a Hypergroup (G,\circ_{N}). Journal of Science Ladkrabang, 31(2), 130–139. Retrieved from https://li01.tci-thaijo.org/index.php/science_kmitl/article/view/252826
Section
Research article

References

Pinter, C. C. 1971. Set Theory, Additon – Wesley, Massaehuselts.

มานัส บุญยัง. 2556. พีชคณิตนามธรรม 1. พิมพ์ครั้งที่ 5, สำนักพิมพ์มหาวิทยาลัยรามคำแหง, กรุงเทพมหานคร. [Manus Boonyang. 2013. Abstract Algebra . 5thed, Ramkhamhaeng University Press, Bangkok. (in Thai)]

Fraleigh, John B. 1980. A First Course in Abstract Algebra, Addison-Wesley, Reading Massachusettes.

Birkhoff, G. and Bartee, Thomas C. 1970. Modern Applied Algebra, McGraw-Hill Book Company, New York.

Corsini, P. 1993. Prolegomenu of Hypergroup Theory, AvianiEditove, Udine Ltaly.