Coset of a Hypergroup (G,\circ_{N})
Main Article Content
Abstract
A hyperoperation on a nonempty set is a function where is the power set of . The value of any under is denoted by which is called the hyperproduct of and . If we have is a group and is a normal subgroup of , then is a hypergroup where the hyperoperationis defined by for all .
We take a hyperoperation to construct cosets of any subgroup of instead of coset multiplication by binary operation of and studies basic properties of this new structure of coset.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Pinter, C. C. 1971. Set Theory, Additon – Wesley, Massaehuselts.
มานัส บุญยัง. 2556. พีชคณิตนามธรรม 1. พิมพ์ครั้งที่ 5, สำนักพิมพ์มหาวิทยาลัยรามคำแหง, กรุงเทพมหานคร. [Manus Boonyang. 2013. Abstract Algebra . 5thed, Ramkhamhaeng University Press, Bangkok. (in Thai)]
Fraleigh, John B. 1980. A First Course in Abstract Algebra, Addison-Wesley, Reading Massachusettes.
Birkhoff, G. and Bartee, Thomas C. 1970. Modern Applied Algebra, McGraw-Hill Book Company, New York.
Corsini, P. 1993. Prolegomenu of Hypergroup Theory, AvianiEditove, Udine Ltaly.