The Reduction Diameter of Nano Fibrils Cellulose Extracted from Rice Straws via the Mechanical Grinding Process to be Used as a Reinforcing Material in PVA:NFC Bioplastic Films

Main Article Content

Prasopporn Junlabhut
Supannee Parinyavuttichai
Pilaipon Nuthongkum


In this research, nano fibril cellulose was extracted from rice straws waste using a mechanical grinding process and used as a reinforcing material in bio-based films made of polyvinyl alcohol and cellulose nanofibrils. The size reduction of the cellulose fibers was studied under different grinding times of 0, 30 and 60 minutes at a speed of 25,000 rpm. The results showed that the size of the cellulose fibers decreased from 5.01 0.38 micrometers to 16.31 1.31 nanometers after 60 minutes. The physical, structural, and chemical properties of the extracted nano fibril cellulose confirmed that the fibers were cellulose I. The surface morphology of the cellulose was examined by Fe-SEM, which revealed that the nano fibril cellulose had a smaller size compared to conventional methods, and uniform dispersion was obtained, which is beneficial for their application as a reinforcing material in the production of bio-based films. In the bio-based film process, the effect of the ratio of polyvinyl alcohol to nano fibril cellulose (PVA:NFC) on the optical and mechanical properties was studied. The addition of nano cellulose in films increased the UV blocking ability, indicating that the increased amount of cellulose had an effect on the ability of the films to prevent UV radiation. Furthermore, the reinforced cellulose had an effect on the mechanical properties, with the tensile strength at yield reaching a maximum of 7.12 0.22 MPa with a ratio of PVA:NFC of 7:3. Adding cellulose to the matrix of PVA improved the Young’s modulus of the film. This research demonstrates the potential of using nano fibril cellulose extracted from rice straws waste as a reinforcing material in bio-based films made of PVA:NFC. The study also highlights the optimized ratio of PVA:NFC to achieve suitable bio plastic films.

Article Details

How to Cite
Junlabhut, P., Parinyavuttichai, S., & Nuthongkum, P. (2023). The Reduction Diameter of Nano Fibrils Cellulose Extracted from Rice Straws via the Mechanical Grinding Process to be Used as a Reinforcing Material in PVA:NFC Bioplastic Films. Journal of Science Ladkrabang, 32(1), 139–158. Retrieved from
Research article


ศิริพร เต็งรัง. 2558. วิจัยและพัฒนาบรรจุภัณฑ์. โครงการวิจัย, กรมวิชาการเกษตร. [Siriporn Tengrang. 2015. [Packaging Technology Research and Development Project. Research project report, Department of Agriculture. (in Thai)]

Hopewell, J., Dvorak, R. and Kosior, E. 2009. Plastics recycling: challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2115-2126.

สำนักงานเศรษฐกิจการเกษตร กระทรวงเกษตรและสหกรณ์. 2566. แหล่งข้อมูล: https://www. ค้นเมื่อวันที่ 18 เมษายน 2566.

วิภาดา ศิริอนุสรณ์ศักดิ์ และนุษรา สินบัวทอง. 2556. การปรับสภาพฟางข้าวทางเคมีเพื่อเป็นสาร ตั้งต้นในการผลิตพลังงานทดแทน. การประชุมทางวิชาการของมหาวิทยาลัยเกษตรศาสตร์, ครั้งที่ 51, มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพมหานคร, 129-135. [Wipada Siri-anusornsak and Nusara Sinbuathong. 2013. Chemical pretreatment of rice straw for a raw material in the production of renewable energy. Proceedings of 51st Kasetsart University Annual Conference: Science, Natural Resources and Environment, Bangkok. 129-135. (in Thai)]

Feng, Z., Xu, D., Shao, Z., Zhu, P., Qiu, J. and Zhu, L. 2022. Rice straw cellulose microfiber reinforcing PVA composite film of ultraviolet blocking through pre-cross-linking. Carbohydrate Polymers, 296, 119886.

สุธีรา วิทยากาญจน์ และวุฒินันท์ คงทัด. 2556. การผลิตนาโนเซลลูโลสจากฟางข้าว. การประชุมวิชาการ, ครั้งที่ 10, สถาบันค้นคว้าและพัฒนาผลทางการเกษตรและอุตสาหกรรมเกษตร,กรุงเทพ- มหานคร, 54-60. [Suteera Withayakran and Wuttinant Kongtud. 2013. Preparation of cellulose nanowhiskers from rice straw. 10th Annual Conference: Science, Kasetsart Agricultural and Agro-Industrial Product Improvement Institute. Business Product Development Technology, Bangkok. 54-60. (in Thai)]

Chin, K.M., Ting, S.S., Lin, O.H. and Owi, W.T. 2017. Extraction of microcrystalline cellulose from rice straw and its effect on polyvinyl alcohol biocomposites film. In AIP conference proceedings, 1865(1), 040006.

Ratanasongtham, P. 2022. Preparation of Eco-friendly Blended Bioplastic Film between Blend of Polyvinyl Alcohol and Cellulose Extracted from Nelumbo nucifera Gaertn Stalk. Journal of Applied Research on Science and Technology, 21(2), 26-38.

ดารณี ขันเพ็ชร และปิยะนุช รสเครือ. 2557. การปรับปรุงคุณสมบัติเชิงกลของฟิล์มพอลิไวนิลแอลกอฮอล์ (พี วี เอ)/โซเดียมคาร์บอกซี่เมทิลเซลลูโลส (โซเดียม-ซี เอ็ม ซี) สำหรับประยุกต์ใช้ใน บรรจุภัณฑ์แอคทีฟ. วารสารวิทยาศาสตร์บูรพา. การประชุมระดับชาติ วิทยาศาสตร์วิจัย, ครั้งที่ 6, 447-455. [Daranee Khunphet and Piyanuch Roskhrua. 2014. Improvement mechanical properties of polyvinyl alcohol (PVA)/sodium carboxymethyl cellulose (NaCMC) films for active packaging applications. Burapha Science Journal, The 6th Science Research conference, 447-455. (in Thai)]

ยศฐา ศรีเทพ, ดรรชนีย์ พลหาญ, สุพรรณ ยั่งยืน และอรปรียา เวียงอินทร์. 2562. ผลของสารช่วยยืดสายโซ่พอลิเมอร์และเส้นใยกล้วยต่อสมบัติของพอลิไวนิลแอลกอฮอล์. J Sci Technol MSU, 38(4), 429-236. [Yottha Srithep, Dutchanee Pholharn, Supan Yangyuen and Onpreeya Veang-in. 2019. Effect of Chain Extender and Banana Fiber on Melt-Processing Properties of Poly (vinyl alcohol). J Sci Technol MSU, 38(4), 429-236. (in Thai)]

ยุพาพร รักสกุลพิวัฒน์ และไชยวัฒน์ รักสกุลพิวัฒน์. 2563. ยางธรรมชาติดัดแปรเสริมแรงด้วยนาโนเซลลูโลสจากกากมันสำปะหลัง. รายงานการวิจัย, สาขาวิชาวิศวกรรมพอลิเมอร์, สำนักวิชาวิศวกรรมศาสตร์, มหาวิทยาลัยเทคโนโลยีสุรนารี. [Yupa Ruksakulpiwat and Chaiwat Ruksakulpiwat. 2020. Modified natural rubber reinforced with nanocellulose from casava pulp. Research project report, Suranaree University of Technology. (in Thai)]

Plermjai, K., Boonyarattanakalin, K., Mekprasart, W., Pavasupree, S., Phoohinkong, W. and Pecharapa, W. 2018. Extraction and characterization of nanocellulose from sugarcane bagasse by ball-milling-assisted acid hydrolysis. In AIP Conference Proceedings, 2010(1), 020005.

Xu, K., Liu, C., Kang, K., Zheng, Z., Wang, S., Tang, Z. and Yang, W. 2018. Isolation of nanocrystalline cellulose from rice straw and preparation of its biocomposites with chitosan: Physicochemical characterization and evaluation of interfacial compatibility. Composites Science and Technology, 154, 8-17.

Alcántara, J.C., González, I., Pareta, M.M. and Vilaseca F. 2020. Biocomposites from rice straw nanofibers: morphology, thermal and mechanical properties. Materials, 13 (9), 2138.

Inglesby, M.K., Gray, G.M., Wood, D.F., Gregorski, K.S., Robertson, R.G. and Sabellano, G.P. 2005. Surface characterization of untreated and solvent-extracted rice straw. Colloids and Surfaces B: Biointerfaces, 43(2), 83-94.

Rosa, S.M., Rehman, N., de Miranda, M.I.G., Nachtigall, S.M. and Bica, C.I. 2012. Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydrate Polymers, 87(2), 1131-1138.

Lu, P. and Hsieh, Y.L. 2012. Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydrate Polymers, 87(1), 564-573.

Mandal, A. and Chakrabarty, D. 2011. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers, 86(3), 1291-1299.

Bouramdane, Y., Fellak, S., El Mansouri, F. and Boukir, A. 2022. Impact of Natural Degradation on the Aged Lignocellulose Fibers of Moroccan Cedar Softwood: Structural Elucidation by Infrared Spectroscopy (ATR-FTIR) and X-ray Diffraction (XRD). Fermentation, 8(12), 698.

Dilamian, M. and Noroozi, B. 2019. A combined homogenization-high intensity ultrasonication process for individualizaion of cellulose micro-nano fibers from rice straw. Cellulose, 26, 5831-5849.

Plermjai, K., Termkoa, K., Meechowas, E. and Pecharapa, W. 2020. Thermal and functional group characterization of cellulose from sugarcane bagasse. Bulletin of Applied Sciences, 9(9), 31-37.

Hu, S., Gu, J., Jiang, F. and Hsieh, Y.L. 2016. Holistic rice straw nanocellulose and hemicelluloses/lignin composite films. ACS Sustainable Chemistry & Engineering, 4(3), 728-737.

Agustin, M.B., Ahmmad, B., Alonzo, S. M.M. and Patriana, F.M. 2014. Bioplastic based on starch and cellulose nanocrystals from rice straw. Journal of Reinforced Plastics and Composites, 33(24), 2205-2213.

Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C. and Imam, S.H. 2010. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate polymers, 81(1), 83-92.

Sheng, T., Zhao, L., Gao, L., Liu, W., Wu, G., Wu, J. and Wang, A. 2018. Enhanced biohydrogen production from nutrient-free anaerobic fermentation medium with edible fungal pretreated rice straw. RSC advances, 8(41), 22924-22930.

Javier-Astete, R., Jimenez-Davalos, J. and Zolla, G. 2021. Determination of hemicellulose, cellulose, holocellulose and lignin content using FTIR in Calycophyllum spruceanum (Benth.) K. Schum. and Guazuma crinita Lam. PLoS One, 16(10), e0256559.

Poletto, M., Pistor, V., Zeni, M. and Zattera, A.J. 2011. Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polymer Degradation and Stability, 96(4), 679-685.

Safwat, E., Hassan, M.L., Saniour, S., Zaki, D.Y., Eldeftar, M., Saba, D. and Zazou, M. 2018. Injectable TEMPO-oxidized nanofibrillated cellulose/biphasic calcium phosphate hydrogel for bone regeneration. Journal of biomaterials applications, 32(10), 1371-1381.

Hospodarova, V., Singovszka, E. and Stevulova, N. 2018. Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials. American journal of analytical chemistry, 9(6), 303-310.

พัชราภรณ์ พิมพ์จันทร์, สุรีย์รัตน์ อู๋สูงเนิน, แสงระวี บิดร, สิริกานต์ ดวงดี และอรุณรัตน์ อุทัยคู. 2563. การศึกษาองค์ประกอบทางเคมีของธูปฤาษี และสารสกัดเซลลูโลสจากธูปฤาษีเพื่อประยุกต์ใช้ในผลิตภัณฑ์อาหาร, วารสารวิทยาศาสตร์ประยุกต์, 19(2), 116-128. [Patcharaporn Pimchan, Sureerat Usoungnern, Sangravee Bidon, Sirikan Duangde, A-roonrat Utaiku. 2020. Study on chemical composition of Typha angustifalia L and extracted cellulose from Typha angustifalia L for food applications. The Journal of Applied Science, 19(2), 116-128. (in Thai)]

Lu, P. and Hsieh, Y.L. 2012. Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydrate Polymers, 87(1), 564-573.

Sakhiya, A.K., Anand, A., Vijay, V.K. and Kaushal, P. 2021. Thermal decomposition of rice straw from rice basin of India to improve energy-pollution nexus: Kinetic modeling and thermodynamic analysis. Energy Nexus, 4, 100026.

Li, L., Jia, Z., Ma, H., Bao, W., Li, X., Tan, H., Xu, F., Xu, H. and Li, Y., 2019. The effect of two different biochars on remediation of Cd-contaminated soil and Cd uptake by Lolium perenne. Environmental geochemistry and health, 41, 2067-2080.

Redlinger-Pohn, J.D., Petkovšek, M., Gordeyeva, K., Zupanc, M., Gordeeva, A., Zhang, Q. and Söderberg, L.D. 2022. Cavitation fibrillation of cellulose fiber. Biomacromolecules, 23(3), 847-862.

Feng, Z., Xu, D., Shao, Z., Zhu, P., Qiu, J. and Zhu, L. 2022. Rice straw cellulose microfiber reinforcing PVA composite film of ultraviolet blocking through pre-cross-linking. Carbohydrate Polymers, 296, 119886.

Kord, B., Malekian, B., Yousefi, H. and Najafi, A. 2016. Preparation and characterization of nanofibrillated Cellulose/Poly (Vinyl Alcohol) composite films. Maderas. Cienciay tecnología, 18(4), 743-752.

Kakroodi, A. R., Cheng, S., Sain, M. and Asiri, A. 2014. Mechanical, thermal, and morphological properties of nanocomposites based on polyvinyl alcohol and cellulose nanofiber from Aloe vera rind. Journal of Nanomaterials, 139-139.