Health Promotion and Disease Control in Aquaculture through Alternative Therapeutic Approaches

Main Article Content

Traimat Boonthai
Apirak Wiseschart
Salinee Phonmat

Abstract

Aquaculture is facing various threats from climate change, ecosystem deterioration, and disease outbreaks leading to decreased yield, food security and sustainability. Throughout the years, disease management in aquaculture has largely relied on the use of antibiotics and chemical treatments. However, the indiscriminate and excessive application of these chemicals has resulted in severe consequences, e.g. the spread of antimicrobial-resistant bacteria, disruption of metabolic processes in aquatic species, environmental degradation, accumulation of hazardous chemical residues in aquaculture products, and potential threat to human health. To ensure the sustainability of aquaculture, it is imperative to establish good aquaculture management and implement effective biosecurity measures. Moreover, effective alternative approaches should be simultaneously considered to enhance growth performance and control disease outbreaks in farmed aquatic species, which will lead to sustainable farming system management. This article reviews literature discussing viable alternative approaches applied in aquaculture, including phytotherapeutics, probiotics, bacteriophage therapy, and nanotherapeutics. These innovative approaches offer promising benefits in enhancing growth performance and disease control, while simultaneously promoting the sustainability of aquaculture industry. However, the practical application of these findings at farm level in aquaculture systems still requires further investigation, including legal and food safety regulations, cost-effectiveness, efficacy, potential ecological risks and harms, as well as user understanding and acceptance to ensure the safety, economic viability, and sustainability of aquaculture in Thailand.

Article Details

How to Cite
Boonthai, T., Wiseschart, A., & Phonmat, S. (2025). Health Promotion and Disease Control in Aquaculture through Alternative Therapeutic Approaches. Journal of Science Ladkrabang, 34(2), 172–191. retrieved from https://li01.tci-thaijo.org/index.php/science_kmitl/article/view/267402
Section
Academic article

References

Abdel-Ghany, H. M., & Salem, M. E. S. (2020). Effects of dietary chitosan supplementation on farmed fish: a review. Reviews in Aquaculture, 12(1), 438-452. https://doi.org/10.1111/raq.12326

Abdel-Razek, N. (2019). Antimicrobial activities of chitosan nanoparticles against pathogenic microorganisms in Nile tilapia, Oreochromis niloticus. Aquaculture International, 27, 1315-1330. https://doi.org/10.1007/s10499-019-00388-0

Agarwal, M., Agarwal, M. K., Shrivastav, N., Pandey, S., Das, R., & Gaur, P. (2018). Preparation of chitosan nanoparticles and their in vitro characterization. International Journal of Life-Sciences Scientific Research, 4(2), 1713-1720.

Akmal, M., Rahimi-Midani, A., Hafeez-Ur-Rehman, M., Hussain, A., & Choi, T. J. (2020). Isolation, characterization, and application of a bacteriophage infecting the fish pathogen Aeromonas hydrophila. Pathogens, 9(3), Article 215. https://doi.org/10.3390/pathogens9030215

Albarella, D., Dall´Ara, P., Rossi, L., & Turin, L. (2025). Bacteriophage therapy in freshwater and saltwater aquaculture species. Microorganisms, 13(4), Article 831. https://doi.org/10.3390/microorganisms13040831

Cao, Y., Li, S., Han, S., Wang, D., Zhao, J., Xu, L., Liu, H., & Lu, T. (2020). Characterization and application of a novel Aeromonas bacteriophage as treatment for pathogenic Aeromonas hydrophila infection in rainbow trout. Aquaculture, 523, Article 735193. https://doi.org/10.1016/j.aquaculture.2020.735193

Department of Fisheries. (2024). Fisheries statistics of Thailand 2023. Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok. (in Thai)

Dong, H. T., Nguyen, V. V., Le, H. D., Sangsuriya, P., Jitrakorn, S., Saksmerprome, V., Senapin, S., & Rodkhum, C. (2015). Naturally concurrent infections of bacterial and viral pathogens in disease outbreaks in cultured Nile tilapia (Oreochromis niloticus) farms. Aquaculture, 448, 427-435. https://doi.org/10.1016/j.aquaculture.2015.06.027

Doan, H. V., Hoseinifar, S. H., Sringarm, K., Jaturasitha, S., Yuangsoi, B., Dawoode, M. A. O., Esteban, M. A., Ringø, E., & Faggio, C. (2019). Effects of Assam tea extract on growth, skin mucus, serum immunity and disease resistance of Nile tilapia (Oreochromis niloticus) against Streptococcus agalactiae. Fish and Shellfish Immunology, 93, 428-435. https://doi.org/10.1016/j.fsi.2019.07.077

Elgendy, M. Y., Shaalan, M., Abdelsalam, M., Eissa, A. E., El-Adawy, M. M., & Seida, A. A. (2021). Antibacterial activity of silver nanoparticles against antibiotic-resistant aeromonas veronii infections in Nile tilapia, Oreochromis niloticus (L.), in vitro and in vivo assay. Aquaculture Research, 35, 901-920. https://doi.org/10.1111/are.15632

Elgendy, M. Y., Ali, S. E., Abdelsalam, M., Abd El-Aziz, T. H., Abo-Aziza, F., Osman, H. A., Authman, M. N., & Abbas, W. T. (2023). Onion (Allium cepa) improves Nile tilapia (Oreochromis niloticus) resistance to saprolegniasis (Saprolegnia parasitica) and reduces immunosuppressive effects of cadmium. Aquaculture International, 31, 1457-1481. https://doi.org/10.1007/s10499-022-01035-x

Fadel, A., Khafage, A., Abdelsalam, M., & Abdel Rahim, M. M. (2025). Comparative evaluation of three herbal extracts on growth performance, immune response, and resistance against Vibrio parahaemolyticus in Litopenaeus vannamei. BMC Veterinary Research, 21, Article 166. https://doi.org/10.1186/s12917-025-04588-0

Galib, M. R. H., Ghosh, A. K., & Sabbir, W. (2025). Dietary impact of Ocimum tenuiflorum leaf extract on the growth metrics and immune responses of shrimp (Penaeus monodon) against white spot syndrome virus (WSSV). Heliyon, 11(1), Article e41583. https://doi.org/10.1016/j.heliyon.2024.e41583

Giri, S. S., Sukumaran, V., & Park, S. C. (2019). Effects of bioactive substance from turmeric on growth, skin mucosal immunity and antioxidant factors in common carp, Cyprinus carpio. Fish & Shellfish Immunology, 92, 612-620. https://doi.org/10.1016/j.fsi.2019.06.053

Javed, Z., Dashora, K., Mishra, M., Fasake, V. D., & Srivastva, A. (2019). Effect of accumulation of nanoparticles in soil health- a concern on future. Frontiers in Nanoscience and Nanotechnology, 5, 1-9. https://doi.org/10.15761/FNN.1000182

Kamble, M. T., Gallardo, W., Salin, K. R., Pumpuang, S., Chavan, B. R., Bhujel, R. C., Medhe, S. V., Kettawan, A., Thompson, K. D., & Pirarat, N. (2024). Effect of Moringa oleifera leaf extract on the growth performance, hematology, innate immunity, and disease resistance of Nile tilapia (Oreochromis niloticus) against Streptococcus agalactiae biotype 2. Animals, 14(6), Article 953. https://doi.org/10.3390/ani14060953

Kayansamruaj, P. (2020). Isolation and characterization of iridoviruses isolated from farmed Asian sea bass and grouper in Thailand [Project abstract, Project Code MRG6180054]. Thailand Science Research and Innovation. https://elibrary.tsri.or.th/fullP/MRG6180054/MRG6180054_abstract.pdf (in Thai)

Kim, J. H., Choresca, C. H., Shin, S. P., Han, J. E., Jun, J. W., & Park, S. C. (2015). Biological control of Aeromonas salmonicida subsp. salmonicida infection in rainbow trout (Oncorhynchus mykiss) using Aeromonas phage PAS-1. Transboundary and Emerging Diseases, 62, 81-86. https://doi.org/10.1111/tbed.12088

Kumar, V., Roy, S., Behera, B. K., Bossier, P., & Das, B. K. (2021). Acute hepatopancreatic necrosis disease (AHPND): virulence, pathogenesis and mitigation strategies in shrimp aquaculture. Toxins, 13(8), Article 524. https://doi.org/10.3390/toxins13080524

Luo, X., Liao, G., Liu, C., Jiang, X., Lin, M., Zhao, C., Tao, J., & Huang, Z. (2018). Characterization of bacteriophage HN 48 and its protective effects in Nile tilapia Oreochromis niloticus against Streptococcus agalactiae infections. Journal of Fish Diseases, 41(10), 1477-1484. https://doi.org/10.1111/jfd.12838

Meneses, J. O., Dias, J. A. R., Cunha, F. S., Santos, H. L., Santos, T. B. R., Santos, C. C. M., Filho, R. M. N., Paixão, P. E. G., Sousa, N. C., Couto, M. V. S., Abe, H. A., Santos, F. J., Oliveira, S. P. C., Maria, A. N., Cardoso, J. C., Costa, L. P., & Fujimoto, R. Y. (2023). Prophylactic and therapeutic effects of a nanocomposite (silver nanoparticle plus Terminalia catappa) against Saprolegnia parasitica in tambaqui. Aquaculture, 574, Article 739695. https://doi.org/10.1016/j.aquaculture.2023.739695

Ministry of Agriculture and Cooperatives. (2016). Notification of the Ministry of Agriculture and Cooperatives Re: Specification of substances added to animal feed, permitted usage levels, and conditions for the prohibition of production, importation, or sale of animal feed B.E. 2559. Royal Gazette, 133(306), 18-26. (in Thai)

Monzón-Atienza, L., Bravo, J., Torrecillas, S., Gómez-Mercader, A., Montero, D., Ramos-Vivas, J., Galindo-Villegas, J., & Acosta, F. (2024). An in-depth study on the inhibition of quorum sensing by Bacillus velezensis D-18: its significant impact on Vibrio biofilm formation in aquaculture. Microorganisms, 12(5), Article 890. https://doi.org/10.3390/microorganisms12050890

Nimrat, S., Keawmanee, P., Boonthai, T., & Vuthiphandchai, V. (2009). Field survey on the use of probiotic in Pacific white shrimp (Litopenaeus vannamei) aquaculture in Rayong province. Burapha Science Journal, 14(1), 56-69. (in Thai)

Nimrat, S., Khaopong, W., Sangsong, J., Boonthai, T., & Vuthiphandchai, V. (2020). Improvement of growth performance, water quality and disease resistance against Vibrio harveyi of postlarval whiteleg shrimp (Litopenaeus vannamei) by administration of mixed microencapsulated Bacillus probiotics. Aquaculture Nutrition, 26, 1407-1418. https://doi.org/10.1111/anu.13028

Nimrat, S., Sae-Kow, W., & Vuthiphandchai, V. (2021). Survey on quality of commercial probiotic products used for marine culture of ornamental fish. Wichcha Journal, 40(1), 31-45. (in Thai)

Nurbaya, M., & Kadriah, I. A. K. (2020). The effect of several types of mangrove extracts on tiger shrimp Penaeus monodon survival rate challenged with white spot syndrome virus (WSSV). IOP Conference Series: Earth and Environmental Science, 564, Article 012054. https://doi.org/10.1088/1755-1315/564/1/012054

Ochoa-Meza, A., Alvarez-Sanchez, A., Romo-Quinonez, C., Barraza, A., Magallon-Barajas, F., Chavez Sanchez, A., Garcia-Ramos, J., Toledano-Magana, Y., Bogdanchikova, N., & Pestryakov, A. (2019). Silver nanoparticles enhance survival of white spot syndrome virus infected Penaeus vannamei shrimps by activation of its immunological system. Fish & Shellfish Immunology, 84, 1083-1089. https://doi.org/10.1016/j.fsi.2018.10.007

Phumkhachorn, P., & Rattanachaikunsopon, P. (2019). Bacteriophages: biology and applications. Journal of Science and Technology, Ubon Ratchathani University, 21(3), 1-13. (in Thai)

Ramskov, T., Forbes, V. E., Gilliland, D., & Selck, H. (2015). Accumulation and effects of sediment-associated silver nanoparticles to sediment-dwelling invertebrates. Aquatic Toxicology, 166, 96-105. https://doi.org/10.1016/j.aquatox.2015.07.002

Ringø, E. (2020). Probiotics in shellfish aquaculture. Aquaculture and Fisheries, 5(1). 1-27. https://doi.org/10.1016/j.aaf.2019.12.001

Roongkamnertwongsa, S., Thawonsuwan, J., Kongtawee, O., & Kongkumnerd, J. (2023). Prevalence of Iridovirus infection in Asian sea bass from hatcheries and nurseries in southern Thailand. Department of Fisheries. https://www4.fisheries.go.th/local/index.php/main/view_blog2/1272/169522/3033 (in Thai)

Saleh, M., Abdel-Baki, A. A., Dkhil, M. A., El-Matbouli, M., & Al-Quraishy, S. (2017). Antiprotozoal effects of metal nanoparticles against Ichthyophthirius multifiliis. Parasitology, 144(13), 1802-1810. https://doi.org/10.1017/S0031182017001184

Salem, S. S., Hammad, E. N., Mohamed, A. A., & El-Dougdoug, W. (2023). A comprehensive review of nanomaterials: types, synthesis, characterization, and applications. Biointerface Research in Applied Chemistry, 13(1), Article 41. https://doi.org/10.33263/BRIAC131.041

Shaalan, M., Sellyei, B., El-Matbouli, M., & Székely, C. (2020). Efficacy of silver nanoparticles to control flavobacteriosis caused by Flavobacterium johnsoniae in common carp, Cyprinus carpio. Diseases of Aquatic Organisms, 137, 175-183. https://doi.org/10.3354/dao03439

Shaheer, P., Sreejith, V. N., Joseph, T. C., Murugadas, V., & Lalitha, K. V. (2021). Quorum quenching Bacillus spp.: an alternative biocontrol agent for Vibrio harveyi infection in aquaculture. Diseases of Aquatic Organisms, 146, 117-128. https://doi.org/10.3354/dao03619

Shinn, A. P., Pratoomyot, J., Griffiths, D., Trong, T. Q., Vu, N. T., Jiravanichpaisal, P., & Briggs, M. (2018). Asian shrimp production and the economic costs of disease. Asian Fisheries Science, 31S, 29-58. https://doi.org/10.33997/j.afs.2018.31.S1.003

Sikdar, R., & Elias, M. (2020). Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: A review of recent advances. Expert Review of Anti-infective Therapy, 18(12), 1221-1233. https://doi.org/10.1080/14787210.2020.1794815

Stalin, N., & Srinivasan, P. (2017). Efficacy of potential phage cocktails against Vibrio harveyi and closely related Vibrio species isolated from shrimp aquaculture environment in the southeast coast of India. Veterinary Microbiology, 207, 83-96. https://doi.org/10.1016/j.vetmic.2017.06.006

Sun, X., Liu, J., Deng, S., Li, R., Lv, W., Zhou, S., Tang, X., Sun, Y. Z., Ke, M., & Wang, K. (2022). Quorum quenching bacteria Bacillus velezensis DH82 on biological control of Vibrio parahaemolyticus for sustainable aquaculture of Litopenaeus vannamei. Frontiers in Marine Science, 9, Article 780055. https://doi.org/10.3389/fmars.2022.780055

Tabassum, T., Mahamud, A. G. M. S. U., Acharjee, T. K., Hassan, R., Snigdha, T. A., Islam, T., Alam, R., Khoiam, M. U., Akter, F., Azad, M. R., Mahamud, M. A. A., Ahmed, G. U., & Rahman, T. (2021). Probiotic supplementations improve growth, water quality, hematology, gut microbiota and intestinal morphology of Nile tilapia. Aquaculture Reports, 21, Article 100972. https://doi.org/10.1016/j.aqrep.2021.100972

Wangkahart, E., Wachiraamonloed, S., Lee, P. T., Subramani, P. A., Qi, Z., & Wang, B. (2022). Impacts of Aegle marmelos fruit extract as a medicinal herb on growth performance, antioxidant and immune responses, digestive enzymes, and disease resistance against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 120, 402-410. https://doi.org/10.1016/j.fsi.2021.11.015