Rheology Property Testingof Shear Flows
Main Article Content
บทคัดย่อ
บทความนี้จะอธิบายถึงสมบัติรีโอโลยีของการทดสอบการไหลแบบเฉือน (Shear test experiments) ที่ใช้กันมากเช่น การทดสอบเฉือนคงตัว (Steady shear)การทดสอบเฉือนไป-มา (Oscillatory shear)ความเค้นเฉือนโตขึ้น (Stress growth) ความเค้นเฉือนลดลง (Stress decay) ความเค้นผ่อนคลาย (Stress relaxation)และการคืบเฉือน (Shear creep)เป็นต้น ทางสมาคมรีโอโลยีแห่งสหรัฐอเมริกา (Society of Rheology, USA) ได้ตั้งคณะกรรมการทำความตกลงร่วมกันในการใช้สมบัติรีโอโลยีที่ได้จากการทดสอบรวมทั้งกำหนดตัวแปรที่ได้จากการทดสอบเหล่านี้ และได้ประกาศให้กับนักวิจัยที่ทำงานทางด้านรีโอโลยีได้ใช้ตัวแปรและสมบัติรีโอโลยีที่ได้จากการทดสอบในทิศทางเดียวกัน ถึงแม้ว่าในบทความนี้จะรวบรวมสมบัติรีโอโลยีของการทดสอบการไหลแบบเฉือนที่ใช้กันมากไว้แล้ว แต่ก็ยังมีสมบัติรีโอโลยีบางตัวที่ไม่ได้กล่าวถึงในที่นี้
Article Details
รูปแบบการอ้างอิง
โกลิตะวงษ์ ช. (2018). Rheology Property Testingof Shear Flows. วารสารวิทยาศาสตร์ลาดกระบัง, 27(2), 44–64. สืบค้น จาก https://li01.tci-thaijo.org/index.php/science_kmitl/article/view/164162
ประเภทบทความ
บทความวิจัย
เอกสารอ้างอิง
[1] Bird, R.B., Stewaet, W.E., Lightfoot, E.N., Klingenberg, D.J., “Introductory Transport Phenomena,” Wiley (2015).
[2] SathaphonWangchai, “Finite Element Analysis of Heat Generation in Particle Filled Natural Rubber Valcanizates During Cyclic Deformation,” Master Thesis, Department of Mechanical Engineering, King Mongkut’s Institute of Technology North Bangkok, Thailand (2005).
[3] Wangchai, S., C. Kolitawong, and A. Chaikittiratna, “Finite Element Simulation for Heat Built-up in Vulcanized Natural Rubber Subjected to Dynamic Load,” J. of KMITNB, 18(3), pp.49-61 (2008). Published in Thai.
[4] Wangchai, S., C. Kolitawong, and A. Chaikittiratna, “Finite Element Analysis of Heat Generation in Particle Filled Natural rubber Valcanizates During Cyclic Deformation,” J. of KMITNB, 21(1), pp.754-762 (2011). Published in Thai.
[5] Ward, I.M. and Sweeney, J., An Introduction to The Mechanical Properties of Solid Polymers, 2nd., John Wiley & Sons, Ltd., West Sussex, UK (2004).
[6] John M. Dealy, Official Nomenclature for Material Functions Describing the Response of a Viscoelastic Fluid to Various Shearing and Extensional Deformations, Journal of Rheology, 28, 181 (1984).
[7] John M. Dealy, Official Nomenclature for Material Functions Describing the Response of a Viscoelastic Fluid to Various Shearing and Extensional Deformations, Journal of Rheology, 39, 253 (1995).
[8] Ad Hoc Committee on Official Nomenclature and Symbols, Official symbols and nomenclature of the society of rheology, Journal of Rheology, 57, 1047 (2013).
[9] W. Gleißle, “Rate- or stress-controlled rheometry,” Chapter 12, Collyer, A. A. and Clegg, D.W., Rheological Measurement, 2nd Ed., Chapman and Hall, London & New York, pp.357-391 (1998).
[10]. Kwang Soo Cho, Viscoelasticity of Polymers: Theory and Numerical Algorithms, Springer Series in Materials Science Vol. 241, (Springer, Dordrecht, 2016).
[11] Dealy, J.M., and K.F. Wissbrun, Melt Rheology and its Role in Plastics Processing: Theory and Applications, Van Nostrand Reinhold, New York (1990).
[12] Giacomin, A.J. and Dealy, J.M., “Using large-amplitude oscillatory shear,” Chapter 11, Collyer, A. A. and Clegg, D.W., Rheological Measurement, 2nd Ed., Chapman and Hall, London & New York, pp.327-356 (1998).
[13] C. Kolitawong, Local shear stress transduction in sliding plate rheometry, Ph.D. Dissertation, Department of Mechanical Engineering, The University of Wisconsin-Madison, USA (2002).
[14]. Giacomin, A.J., and Bird, R.B., Erratum: Official Nomenclature of The Society of Rheology: , Journal of Rheology, 55(4), 921-923 (2011).
[15] J.D. Ferry, Viscoelastic properties of polymers, 2nd. Ed., John Wiley & Sons, Inc., New York (1970).
[16] Jung Gun Nam et al., Phase angle of the first normal stress difference in oscillatory shear flow, Korea-Australia Rheology Journal, 22(4), pp.247-258 (2010).
[17]Saengow, C. and A.J. Giacomin, “Normal Stress Differences from Oldroyd 8-Constant
Framework: Exact Analytical Solution For Large-Amplitude Oscillatory Shear Flow,”
Physics of Fluids, 29, 121601 (2017).
[18] C Saengow and AJ Giacomin, Exact solutions for oscillatory shear sweep behaviors of complex fluids from Oldroyd 8-constant framework, Physics of Fluids, 30, 030703 (2018).
[19]. J.D. Ferry, Viscoelastic properties of polymers, 2nd. Ed., John Wiley & Sons, Inc., New York (1970).
[20] Certh, C.,et al., Rheology of fibrin clots II. Linear viscoelastic behavior in shear creep, Biophysical Chemistry, 2, pp.208-217 (1974).
[21]. Nelb, G.W., et al., Rheology of fibrin clots III. Shear creep and creep recovery of fine ligated and coarse unligated clots, Biophysical Chemistry, 5, pp.377-387 (1976).
[2] SathaphonWangchai, “Finite Element Analysis of Heat Generation in Particle Filled Natural Rubber Valcanizates During Cyclic Deformation,” Master Thesis, Department of Mechanical Engineering, King Mongkut’s Institute of Technology North Bangkok, Thailand (2005).
[3] Wangchai, S., C. Kolitawong, and A. Chaikittiratna, “Finite Element Simulation for Heat Built-up in Vulcanized Natural Rubber Subjected to Dynamic Load,” J. of KMITNB, 18(3), pp.49-61 (2008). Published in Thai.
[4] Wangchai, S., C. Kolitawong, and A. Chaikittiratna, “Finite Element Analysis of Heat Generation in Particle Filled Natural rubber Valcanizates During Cyclic Deformation,” J. of KMITNB, 21(1), pp.754-762 (2011). Published in Thai.
[5] Ward, I.M. and Sweeney, J., An Introduction to The Mechanical Properties of Solid Polymers, 2nd., John Wiley & Sons, Ltd., West Sussex, UK (2004).
[6] John M. Dealy, Official Nomenclature for Material Functions Describing the Response of a Viscoelastic Fluid to Various Shearing and Extensional Deformations, Journal of Rheology, 28, 181 (1984).
[7] John M. Dealy, Official Nomenclature for Material Functions Describing the Response of a Viscoelastic Fluid to Various Shearing and Extensional Deformations, Journal of Rheology, 39, 253 (1995).
[8] Ad Hoc Committee on Official Nomenclature and Symbols, Official symbols and nomenclature of the society of rheology, Journal of Rheology, 57, 1047 (2013).
[9] W. Gleißle, “Rate- or stress-controlled rheometry,” Chapter 12, Collyer, A. A. and Clegg, D.W., Rheological Measurement, 2nd Ed., Chapman and Hall, London & New York, pp.357-391 (1998).
[10]. Kwang Soo Cho, Viscoelasticity of Polymers: Theory and Numerical Algorithms, Springer Series in Materials Science Vol. 241, (Springer, Dordrecht, 2016).
[11] Dealy, J.M., and K.F. Wissbrun, Melt Rheology and its Role in Plastics Processing: Theory and Applications, Van Nostrand Reinhold, New York (1990).
[12] Giacomin, A.J. and Dealy, J.M., “Using large-amplitude oscillatory shear,” Chapter 11, Collyer, A. A. and Clegg, D.W., Rheological Measurement, 2nd Ed., Chapman and Hall, London & New York, pp.327-356 (1998).
[13] C. Kolitawong, Local shear stress transduction in sliding plate rheometry, Ph.D. Dissertation, Department of Mechanical Engineering, The University of Wisconsin-Madison, USA (2002).
[14]. Giacomin, A.J., and Bird, R.B., Erratum: Official Nomenclature of The Society of Rheology: , Journal of Rheology, 55(4), 921-923 (2011).
[15] J.D. Ferry, Viscoelastic properties of polymers, 2nd. Ed., John Wiley & Sons, Inc., New York (1970).
[16] Jung Gun Nam et al., Phase angle of the first normal stress difference in oscillatory shear flow, Korea-Australia Rheology Journal, 22(4), pp.247-258 (2010).
[17]Saengow, C. and A.J. Giacomin, “Normal Stress Differences from Oldroyd 8-Constant
Framework: Exact Analytical Solution For Large-Amplitude Oscillatory Shear Flow,”
Physics of Fluids, 29, 121601 (2017).
[18] C Saengow and AJ Giacomin, Exact solutions for oscillatory shear sweep behaviors of complex fluids from Oldroyd 8-constant framework, Physics of Fluids, 30, 030703 (2018).
[19]. J.D. Ferry, Viscoelastic properties of polymers, 2nd. Ed., John Wiley & Sons, Inc., New York (1970).
[20] Certh, C.,et al., Rheology of fibrin clots II. Linear viscoelastic behavior in shear creep, Biophysical Chemistry, 2, pp.208-217 (1974).
[21]. Nelb, G.W., et al., Rheology of fibrin clots III. Shear creep and creep recovery of fine ligated and coarse unligated clots, Biophysical Chemistry, 5, pp.377-387 (1976).